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Abstract—Assistive devices for disabled individuals provide the
support to fulfil their activities of daily living. The proposed
mobile robotic assistant (MRA) in this paper is capable of provid-
ing both mobile and manipulation support for users. The MRA,
which consists of an electric wheelchair and a custom developed
5DOF robotic manipulator is controlled by a Motor Imagery (MI)
Electroencephalography (EEG) and Electrooculography (EOG)
based Brain Machine Interface (BMI) which is proposed in this
paper. A custom developed Graphical User Interface (GUI) is
utilized to interact with the users and users are able to control
either the wheelchair or the robotic manipulator based on a
combination of left and right hand MI-EEG signals and EOG
signals via this GUI. A Multilayer Perceptron (MLP) Neural
Network based classifier is developed to classify the EEG signals
of left vs right vs rest. EOG signals (eye-blinks) are used to
activate the task on the GUI menu. A set of experiments have
been carried out with healthy subjects and the results show the
effectiveness of the proposed methods.

Index Terms—Brain Machine Interface, Motor Imagery, Elec-
troencephalography, Electrooculography, Mobile Robotic Assis-
tant, Multilayer Perceptron Neural Network.

I. INTRODUCTION

Brain Machine Interface (BMI) is a promising technology

for assisting people who suffer from physical disabilities due

to amyotrophic lateral sclerosis (ALS), brainstem stroke, brain

or spinal cord injury, cerebral palsy, muscular dystrophies,

multiple sclerosis, and numerous other diseases which impair

the neural pathways that control muscles or impair the muscles

themselves [1]. Electroencephalography (EEG) signals are one

of the non-invasive bio-signals which can be used to measure

the brain activities and develop BMIs. Many research work has

been successfully carried out for BMI-controlled wheelchairs

[2], [3] and other type of assistive devices throughout the

past two decades. Most of such cases, the proposed solutions

have been limited only for mobile applications or manipulation

tasks such as meal feeding assistant [4], home appliance

control [5] assistant etc. On the other hand, assistive systems

which are capable of providing assistance to both mobile and

manipulation activities are less. One of the possible reasons is

the challenging nature of implementing a BMI with required

number of distinct brain signals/potentials as input signals.

However, many EEG signals based BMIs have been developed

based on different brain potentials such as Steady State Visual

Evoked Potentials (SSVEP), P300 or Motor Imagery (MI) [6].

A research group from Peru has developed a mobile robotic

assistant [7] using SSVEP based BMI. However, in a typical

SSVEP approach, because of the light bulbs/visual sources

used as stimuli, subject can suffer from eye fatigue [8], [9].

Similar visual approach P300 also inherits the issues pertain

in SSVEPs based approaches. As an alternative method, many

researches have been carried out to explore the possibility of

using MI-EEG signals for developing MI-based BMI though it

is challenging. One of the major challenges in MI based BMI

is the classification of MI-EEG. In order to tackle this problem,

complex mathematical models have been proposed including

machine learning techniques [10]. Support Vector Machines

(SVM) and Neural Networks [11] are commonly used machine

learning techniques for MI-EEG classifications. Attempts from

several research groups [12], [13] reflects that the NNs are a

successful classifier for EEG based MI classifications though

avenues for improvements are still available.

In this paper, a MI-EEG and Electrooculography (EOG)

signals based BMI for a Mobile Robotic Assistant (MRA)

is proposed as shown in the fig.1. The proposed MRA is

capable of providing both mobile and manipulation support.

The MRA, which consists of an electric wheelchair and a

custom developed 5DOF robotic manipulator can be controlled

based on a combination of left and right hand MI-EEG signals
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Fig. 1. Overview of the System: The system consists of an EEG acquisition
system, a Laptop for data processing, mapping and displaying the GUI,
a wheelchair mounted custom developed 4DOF robotic manipulator with
controllers.

and EOG signals via custom developed GUI. A Multilayer

Perceptron (MLP) Neural Network (NN) is used to classify

the EEG signals of left vs right vs rest. At the initial stage,

EEG signals generated during left and right hand movements

of the users are recorded. Then the recorded EEG data are

pre-processed and fed into the proposed MLP-NN for training.

After a complete training of NN, the real-time MI-EEG data

are fed into the NN for classification. When the MI - EEG

signal is classified by the BMI, output of the classifier is

used to change the selected position of the GUI menu. After

the selection, the task can be activated by providing an EOG

signal (double eye blinks) to the BMI. Integrated EOG feature

based threshold classifier is implemented to classify the double

blink related EOG signals. A set of experiments with healthy

subjects are carried out to validate the proposed system and

the results are presented.

The structure of the rest of the paper is as follows. The

section II describes the method and the implementation of BMI

for the control of MRA. Experiments and results are presented

in section III. Finally, section IV concludes the paper with

potential future directions.

II. METHOD

A. Hardware System of the Mobile Robotic Assistant(MRA)

The MRA is equipped with a DC motors driven wheel

chair and a wheel chair mounted 5 DOF robotic manipulator

which communicates with the laptop via Bluetooth as in fig.2.

Arduino Mega 2560 micro-controller is used as the low level

controller. The robotic manipulator can operate in two different

modes. The Cartesian arm mode to move the manipulator to

a finite amount of distance and the pre-defined task mode

to perform a manipulation task such as pick and place. Six

channel Pololu servo driver is used to control joint angles of

the robotic manipulator which were obtained using a kinematic

analysis. Manipulator is equipped with a two jaw gripper

end effector. In the wheelchair mode, the wheelchair can be

moved to a finite amount of distance to 4 directions including

left, right, forward and backward. g.tec HIamp, High Density

Fig. 2. Hardware system of the MRA

EEG signal acquisition system is used for MI-EEG acquisition

which is placed on a container behind the wheel-chair seat.

Fig. 3. Electrode head cap arrangement with 12 electrodes 4 electrodes were
placed around both C3 and C4 electrodes

B. Development of MI-EEG and EOG signals based BMI

MI-EEG signals within 0-30Hz were recorded for offline

classification with a sample rate of 256Hz. The head cap was

consisted of 12 electrodes (C3, C4, C1, C2, C5, C6, CP3,

CP4, FC3, FC4, CZ and CPZ) placed as depicted in fig.3

focusing on C3 and C4 electrodes where the MI-EEG features

are prominent [11], [14]–[16]. Ground electrode was placed

on FPZ. In experimental protocol, the time frame for single

trial was selected as 4 seconds as shown in fig.4 based on

the observations of pre-experiments (as per the literature, the

single trial time frame windows are typically ranging with 2-

15 seconds for motor tasks [15], [17]). A custom developed

GUI was displayed to the subject and the subject performs

the motor task according to the displayed instruction on the

screen. Out of 4 seconds, only one second was instructed

to perform the task while rest of the seconds remain at rest

state. Researches has been carried out for different type of

motor tasks for hands. For an example, a research group
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Fig. 4. Time frame of the experiment protocol used for EEG acquisition and
NN training, offline and real-time classification

Fig. 5. Preprocessing steps and the algorithms implemented in the proposed
method

from University of Minnesota decoded and mapped right

hand movements including Flexion, Extension, Pronation and

Supination [18] in their research. The motor task which was

performed in this experiment was lifting the left and right

hand. Once the EEG signals are recorded, they were pre-

processed in order to enhance the features of the signals.

As shown in fig.5, first the recorded signals were filtered

using Butter-worth band-pass filter in order to isolate the beta

region(14-30Hz) by using an open source Java filtering library.

The common artifacts and the noises were removed using

common average algorithm. As the next step, the power value

was obtained by squaring up the all recorded EEG data points.

Subsequently, the average was taken relative to the rest state

of each recorded EEG signal. After that, the pre-processed

data points of 3 seconds (action, rest, rest) were fed into a

NN for training. A Multi-layer Perceptron (MLP) - NN was

implemented as the neural network which was consisted with

9216 input neurons (256*12*3) and 3 output neurons (left,

right, rest). The structure of the implemented MLP-NN is

depicted in fig. 6. The NN was consisted with two hidden

layers with 128 and 32 neurons respectively as in fig.6. For

the development of MLP - NN java neuroph (version 2.92)

open source machine learning library was used. The MLP-

NN was trained using Momentum Backpropagation learning

rule with a fixed learning rate of 0.1 until the mean squared

error (MSE) converged to 0.01. Sigmoid function was used

as the transfer function in between all layers inside the MLP

Fig. 6. Multi-layer Perceptron Neural Network (MLP-NN) structure devel-
oped in the proposed method

Fig. 7. Developed GUI for Home Window: The user can navigate this GUI
via real time classified MI-EEG signals. EOG signals of eye blinks is used
for activating the task displaying on the GUI.

- NN. 300 MI-EEG samples were used as for the training

purpose and 120 samples were used to validate the trained

NN. Average time taken for a training was below 30 minutes

and once NN is trained, it is used in the real time application

for the real-time EEG classification.

C. Development of GUI

All GUIs were developed using NetBeans IDE (version 8.2).

A Home window consists with six menus for predefined tasks

as shown in fig. 7. Inside the wheel chair menu, the user can

select the required direction to drive the wheel chair. In the

Cartesian mode menu of the robot manipulator can be moved

to a finite amount of distance to the directions of Up, Down,

left and Right. These developed GUIs are operated through

the real time classification signals of MI-EEG. The real time

pre-processed signals are fed into the trained NN while the

application is executed inside a thread written in Java and for

each second, the classified output was obtained. Depending

on the output, menu in the GUI is selected. The user have

to change the selection of the menu using MI-EEG. There is

back option in wheel chair and Cartesian mode to return to

home menu. In order to confirm the selection in GUI, EOG
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Fig. 8. Flowchart of the GUI menu navigation and task selection using
proposed MI-EEG and EOG signals based BMI

TABLE I
DETAILS OF HEALTHY SUBJECTS

Subject Gender Age
Previous experience in

conducting EEG experiments
1 M 24 No
2 M 25 Yes
3 M 24 No
4 M 24 No

signals generated by the double eye blinks are used. It is

classified using a simple threshold (Integrated EOG feature

based threshold) based classifier. Once the EOG signal exceeds

this predefined threshold value, the selected menu is activated.

A flowchart of this process is shown in fig. 8.

III. EXPERIMENTS AND RESULTS

Experiments were carried out to validate the system with

four healthy young subjects(see table I for subject details).

First, the EEG data were recorded from the selected subjects

as described in the method section. Then the MLP-NN was

trained for each subject. The trained MLP-NN accuracy was

tested using a new data set of each subject. Subject 2 has

followed the EEG acquisition protocol more than 10 times

while the other subjects participated for the experiment as

for their first time. The accuracy for each subject, per class

is shown in the fig.9 as confusion matrices. Based on these

results overall accuracy is calculated per each subject (see table

II). As in the result, subject 2 showed the highest overall

accuracy of 84.30% (refer fig.9). Therefore subject 2 was

selected to conduct the real time experiments with MRA.

Real-time experiments were conducted in an open space

with less background noise for all 3 different modes of the

MRA with subject 2. In the predefined mode, the subject 2 was

Fig. 9. Confusion matrices of classification accuracies of trained MLP-NN
for each subject

TABLE II
OVERALL ACCURACY FOR ALL 4 SUBJECTS

Subject Overall Accuracy(%)
1 64.17
2 84.30
3 60.00
4 70.00

asked to perform a manipulation task, eg: moving the bottle

from cage A to cage B as depicted in fig.10. Average time

taken for initiate one manipulation task was 58.7 seconds with

a deviation of 27.5 seconds. As shown in fig.11, experiments

were conducted for mobility tasks using wheelchair mode.

Average time taken for one movement of wheelchair is 35.75

seconds with a deviation of 20.6 seconds. For left and right

turns the wheelchair is turned for 30 degrees of angle. In the

Cartesian mode as in fig.12, to perform one movement for

any direction average time of 40.5 seconds were taken with a

deviation of 15.4 seconds.

Fig. 10. Subject 2 is performing a manipulation task on a book shelf.
A manipulation is done using pre-programmed positions of the robotic
manipulator
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Fig. 11. Wheelchair movements taken from roof mounted camera

Fig. 12. . Controlling the manipulator in Cartesian mode (a) moving the arm
in right, (b) left, (c) upward and (d) downward

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This research proposed a novel assistive system called MRA

which is capable of providing both mobile and manipulation

support for users which is controlled by a MI-EEG and EOG

signals based BMI. The proposed BMI was able to manipulate

the robot arm mounted on the wheelchair effectively along

with the wheelchair movements. The implemented GUI shown

to be effective for the subjects and the obtained results re-

flected that the MLP-NN is an effective classifier for MI-EEG

classifications. For all the subjects, the rest state classification

percentage was higher compared to left and right classification.

In the real time implementation of the system, the noises

in the background affected for the classification of MI-EEG

signals. Less noisy environment was desirable for efficient

task selections(subject 2 feedback). More researches can be

carried out to adopt the system to noisy environments as a

future improvement. The performance of the MLP-NN can be

improved further by changing the neurons and the learning

rate. However, to implement the proposed system in real life

scenarios with real end users or disabled people, more testing

and validations are required. The BMI proposed for MRA in

this research only classified the MI-EEG of left, right hand

movements and rest state of the brain. Furthermore, in order

to enhance the number of control commands, the left and the

right leg movements can also be attempted to classify so that

the EOG signals can be eliminated from the system and the

proposed MRA can be controlled using only MI-EEG signals.
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