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Abstract 
 

 

Gait adaptation is one of the most relevant concepts in gait analysis and its neuronal origin and 

dynamics has been extensively studied in the past few years. In terms of neurorehabilitation, gait 

adaptation perturbs neuronal dynamics and allows patients to restore some of their motor functions. In 

fact, lower-limbs robotic devices and exoskeletons are increasingly used to facilitate rehabilitation as 

well as supporting daily life functions. However, their efficiency and safety depend on how well they 

can detect the human intention to move and adapt the gait. 

Motor imagery (MI), an emerging practise in Brain Computer Interface (BCI), is defined as the 

activity of mentally simulating a given action, without the actual execution of the movement. MI 

classification performance is important in order to develop robust brain computer interface 

environments for neuro-rehabilitation of patients and robotic prosthesis control.   

In the first section of this thesis, it was performed a number of motor imagery tasks along with 

actual movements of the limbs to compare the classification performance of a dry 16-channel and a wet, 

32-channel, wireless (Electroencephalography) EEG system. Results showed the feasibility of home use 

of dry electrode systems with a small number of sensors, and the possibility to discriminate between left 

and right MI tasks for both arms and legs, with a relatively high accuracy.  

The second part of this thesis presents a gait adaptation scheme in natural settings. This 

procedure allows the monitorization of subjects in more realistic environments without the requirement 

of specialized equipment such as treadmill and foot pressure sensors. Gait characteristics were extracted 

based on a single RGB camera, and EEG signals are monitored simultaneously. This method 

demonstrated that it is possible to detect adaptation steps with more than 90% accuracy, when subjects 

tries to adapt their walking speed to a higher or lower speed.  

 

 

 

Key words: BCI, EEG, Electroencephalography, Gait, Gait adaptation, Motor Imagery, 

Neurorehabilitation. 
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Resumo 
 

 

A locomoção é uma das atividades mais comuns e relevantes da vida quotidiana, sendo que 

envolve a ativação dos sistemas nervoso e músculo-esquelético. Os distúrbios da locomoção são comuns 

principalmente na população idosa, sendo que frequentemente estão associados a uma diminuição da 

qualidade de vida. A ocorrência destes distúrbios aumenta com a idade, estimando-se que 

aproximadamente 10% das pessoas com idades entre 60 e 69 anos sofram de algum tipo de distúrbio da 

locomoção, enquanto esse número aumenta para mais de 60% em pessoas com idade superior a 80 anos. 

Os padrões da locomoção são influenciados por doenças, condições físicas, personalidade e humor, 

sendo que um padrão anormal ocorre quando uma pessoa não é capaz de andar da maneira usual, 

maioritariamente devido a lesões, doenças ou outras condições subjacentes.  As causas dos distúrbios 

da marcha incluem condições neurológicas e músculo-esqueléticas. Um grande número de condições 

neurológicas pode causar um padrão de marcha anormal, como por exemplo um acidente vascular 

cerebral, paralisia cerebral ou a doença de Parkinson. Por outro lado, as causas músculo-esqueléticas 

devem-se principalmente a doenças ósseas ou musculares. 

A avaliação ou análise da marcha, inclui a medição, descrição e avaliação das variáveis que 

caracterizam a locomoção humana. Como resultado, este estudo permite o diagnóstico de várias 

condições, bem como avaliar a progressão da reabilitação e desenvolver estratégias de intervenção. 

Convencionalmente, a marcha é estudada subjetivamente com protocolos observacionais. No entanto, 

recentemente foram desenvolvidos métodos mais objetivos e viáveis. Os métodos de análise da marcha 

podem ser classificados em laboratoriais ou portáteis. Embora a análise baseada em laboratório utilize 

equipamentos especializados, os sistemas portáteis permitem o estudo da marcha em ambientes naturais 

e durante atividades da vida diária. A análise laboratorial da marcha é baseada principalmente em 

informações de imagem e vídeo, embora sensores de piso e placas de força também sejam comuns. Por 

outro lado, os sistemas portáteis consistem em um ou vários sensores, ligados ao corpo. 

A adaptação da locomoção é um dos mais relevantes conceitos na análise da mesma, sendo que 

a sua origem e dinâmica neuronal têm sido amplamente estudadas nos últimos anos.  A adaptação da 

marcha reflete a capacidade de um sujeito em mudar de velocidade e direção, manter o equilíbrio ou 

evitar obstáculos. Em termos da reabilitação neurológica, a adaptação da locomoção interfere na 

dinâmica neuronal, permitindo que os pacientes restaurem certas funções motoras. Atualmente, os 

dispositivos robóticos para membros inferiores e os exoesqueletos são cada vez mais usados não só para 

facilitar a reabilitação motora, mas também para apoiar as funções da vida diária. No entanto, a sua 

eficiência e segurança depende da sua eficácia em detetar a intenção humana de mover e adaptar a 

locomoção. Recentemente, foi demonstrado que o ritmo auditivo tem um forte efeito no sistema motor. 

Consequentemente, a adaptação tem sido estudada com base em ritmos auditivos, onde os pacientes 

seguem tons de estimulação para melhorar a coordenação da marcha. 

A imagem motora (MI), uma prática emergente em BCI, ou interface cérebro-máquina, é 

definida como a atividade de simular mentalmente uma determinada ação, sem a execução real do 

movimento. O desempenho da classificação da MI é importante para desenvolver ambientes robustos 

de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas. O 

desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface 

cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas, uma vez que, 

estudos anteriores, concluíram que realizar uma sessão de MI ativa parcialmente as mesmas regiões 

cerebrais que o desempenho da tarefa real. Inicialmente, a tarefas de MI centravam-se apenas nos 

movimentos dos membros superiores, no entanto, recentemente, estas começaram também a focar-se 

nos movimentos dos membros inferiores, de modo a estudar a locomoção humana. A deteção da 

intenção motora em tarefas de MI enfrenta vários desafios, mesmo para duas classes (esquerda / direita, 
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por exemplo), sendo que um dos principais desafios se deve ao número, localização e tipo de elétrodos 

de EEG usados. 

Recentemente, um número crescente de estudos investigou a atividade cerebral durante a 

locomoção humana. Esses estudos, baseados maioritariamente no EEG, encontraram várias relações 

entre regiões cerebrais e ações ou movimentos específicos. Por exemplo, concluiu-se que a atividade 

cerebral aumenta durante a caminhada ou a preparação para caminhar e que a potência nas bandas µ e 

β diminui durante a execução voluntária do movimento. Em termos de adaptação da marcha, foi 

demonstrado que a atividade eletrocortical varia de acordo com a tarefa motora executada. 

Recentemente, as Interfaces Cérebro-Máquina permitiram o desenvolvimento de novas terapias de 

reabilitação para restaurar as funções motoras em pessoas com deficiências na locomoção, envolvendo 

o SNC para ativar dispositivos externos.  

Na primeira parte desta tese, foram realizadas várias tarefas de MI, juntamente com os 

movimentos reais dos membros inferiores, de modo a comparar o desempenho da classificação de um 

sistema wireless de 16 elétrodos secos com um sistema wireless de 32 elétrodos com gel condutor. A 

extração e classificação das características do sinal foram também avaliadas com mais de um método 

(LDA e CSP). No final, a combinação de um filtro beta passa-banda com um filtro RCSP mostrou a 

melhor taxa de classificação. Embora durante a aquisição do EEG todos os canais tenham sido 

utilizados, durante os métodos de processamento, foram escolhidas duas configurações específicas, onde 

os elétrodos foram selecionados de acordo com sua posição relativamente ao córtex motor. Desde modo, 

infere-se que uma seleção cuidada da localização dos elétrodos é mais importante do que ter um denso 

mapa de elétrodos, o que torna os sistemas EEG mais confortáveis e de fácil utilização. Os resultados 

mostram também a viabilidade do uso doméstico de sistemas de elétrodos secos com um reduzido 

número de sensores, e a possibilidade de diferenciar entre as tarefas de MI (esquerda e direita), para 

ambos os membros, com uma precisão relativamente alta. 

Por outro lado, a segunda parte desta tese apresenta um esquema de adaptação da marcha em 

ambientes naturais. De modo a avaliar a adaptação da marcha, os sujeitos seguem um tom rítmico que 

alterna entre três modos distintos (lento, normal e acelerado). As características da locomoção foram 

extraídas com base numa câmara RGB, sendo que os sinais de EEG foram monitorados 

simultaneamente. De seguida, estas características bem como as informações do tempo de reação foram 

utilizadas para extrair as etapas de adaptação da marcha versus etapas de não adaptação. De modo a 

remover os artefactos presentes no EEG, devidos maioritariamente ao movimento do sujeito, o sinal for 

filtrado com uma filtro passa-banda e sujeito a uma análise de componentes independentes (ICA). 

Posteriormente, as características de adaptação da marcha do EEG foram investigadas com base em dois 

problemas de classificação: i) classificação dos passos em direito ou esquerdo e ii) etapas de adaptação 

versus não adaptação da marcha. As características foram extraídas com base em padrões espaciais 

comuns (CSP) e padrões espaciais comuns regularizados (RCSP). Os resultados mostram que é possível 

discriminar com sucesso a adaptação versus não adaptação com mais de 90% de precisão. Este 

procedimento permite a monitoração dos participantes em ambientes mais realistas, sem a necessidade 

de equipamentos especializados, como sensores de pressão. Este método demonstrou que é possível 

detetar a adaptação com mais de 90% de precisão, quando os participantes tentam adaptar sua velocidade 

de marcha para uma velocidade maior ou menor. 

 

 

Palavras-chave: Adaptação da locomoção, BCI, EEG, Eletroencefalografia, Imagem motora, 

Locomoção, Neurorreabilitação. 
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1. Introduction 
 

 

Walking is a common and important activity of daily life and involves the activation of the 

nervous and musculoskeletal systems. Gait has an important role in the quality of life and independence 

of people, mainly in the ones suffering with gait impairments.  Gait disorders are common in the elderly 

population and are frequently associated with a poor quality of life. The occurrence of gait disorders 

increases with age. It is estimated that approximately 10% of people between the ages of 60 and 69 years 

suffer from any kind of gait disorder, while this number increases to more than 60% in people over 80 

years. Moreover, gait patterns are also highly influenced by diseases, physical conditions, personality 

and mood. Abnormal gait is an altered gait pattern which occurs when a person is not able to walk in 

the usual way, mainly due to injuries, diseases or other underlying conditions. The causes of gait 

disorders include neurological and musculoskeletal conditions. An extensive number of neurological 

conditions can cause an abnormal gait pattern, like stroke, cerebral palsy or Parkinson disease. On the 

other hand, musculoskeletal causes are mainly due to bone or muscle diseases. 

The evaluation of gait, or gait analysis, includes the measurement, description and assessment 

of variables that characterize human walking. As a result, the study of gait, allows the diagnostic of 

several conditions, and it is also useful to evaluate rehabilitation progression and to develop intervention 

strategies. Conventionally, gait is studied subjectively with observational protocols. However, in the 

past few years, more objective and feasible methods have been developed. Gait analysis methods can 

be classified in laboratory-based analysis and wearable methods. While laboratory-based analysis uses 

specialized facilities and equipment, wearable systems allows the study of gait in natural environments 

and during daily life activities. Laboratory-based analysis is mainly based on image and video 

information, although floor sensors and force plates are also quite common. On the contrary, wearable 

systems consists in one or multiple sensors, attached to the body. 

An emerging practise in BCI is motor imagery, which is defined as the activity of mentally 

simulating a given action, without the actual execution of the movement. This technique is extensively 

used in rehabilitation, for example, for persons with motor deficits, since numerous studies found that 

performing a MI session activates partially the same brain regions as the performance of the real task.  

Initially, MI focused mainly in hand and arm movements, but recently, studies also started to embrace 

legs and feet movements, in order to study human gait. Research teams are also trying to combine BCI 

with exoskeleton robots.  The detection of motor intention in MI tasks faces several challenges, even for 

just two classes movements (left/right, for example).  One of the main challenges is due to the number, 

placement and type of EEG electrodes. Electrodes can be either wet or dry. Wet electrodes require the 

application of conductive gel that improves the signal quality. However, they require long preparation 

times and impede the use of the technology at everyday scenarios. Dry electrodes may overcome this 

problem, reducing montage times and subject discomfort but the signal quality is poorer. The use of 

fewer channels helps to decrease the computational and montage complexity and develop methods that 

allow real-time feedback to the user. Artefact removal is an additional challenge in intention detection, 

since the EEG data is highly corrupted with noise. In order to decrease the artefacts contamination, 

chapter three illustrates the pre-processing methods for artefact removal in BCI used, namely filtering 

and the ICA techniques. Later, chapter four illustrates the analysis of EEG signals based on time locked 

events.  

In this thesis, chapter five presents a motor imagery study, where the EEG feature extraction 

and classification is studied based on MI and simple movements.   Several two-classes experiments that 

include MI of the hands, legs and actual movements of the legs based on a Graz-BCI stimulation 

paradigm were evaluated. EEG data was acquired from both a dry 16-channel and a 32-channels wet 

system, to compare their offline classification performance. Feature extraction and classification were 
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also evaluated with more than one method.  In the end, the combination of a beta bandpass filter with a 

Regularised Common Spatial Pattern (RCSP) filter has shown the best classification rate. Although 

during the EEG acquisition all the channels have been used, during processing methods, two channels 

configurations have been chosen, where electrodes were selected according to their position relativity 

to the motor cortex. This showed that a careful selection of electrode location is more important than 

having a dense map of electrodes, which makes EEG systems user-friendly and more reliable.  

Chapter six is focused mainly in gait and gait adaptation. Gait adaptation is crucial in walking, 

since it reflects the ability of a subject to change speed and direction, to keep balance or avoid obstacles. 

Deficiencies in gait adaptation may reflect several conditions, such as aging and neurological diseases 

like stroke and Parkinson disease. Furthermore, gait adaptation may also suggest appropriate 

interventions for gait rehabilitation. Adaptation of gait has a strong role in neurorehabilitation, since it 

is able to change neuronal dynamics, allowing patients to restore motor functions. Recently, it has been 

shown that the auditory rhythm has a strong effect on the motor system. Consequently, gait adaptation 

studies have been focusing in auditory rhythms, where patients couple heel strikes and pacing tones to 

improve gait coordination.  

In the field of gait rehabilitation, robot-assisted training has shown to be an emerging technique 

since it offers a safer and more intensive rehabilitation to patients with motor disabilities than 

conventional therapies. Several robotic devices were specially designed to aid the rehabilitation of limbs, 

such as the LokomatTM and LOPESTM devices. These systems have shown that patients trained with 

robotic devices combined with regular physiotherapy showed more promising outcomes than patients 

trained only with regular physiotherapy. 

In the past few years, an increasing number of studies investigated brain activity during human 

locomotion.  These studies, mainly using EEG, have found several relations between brain regions and 

specific actions or movements. For example, it has been found that cerebral activity increases during 

walking or preparation for walking and that the power in the μ and β bands decreases during a voluntary 

execution of movement. In terms of gait adaptation, it has been shown that the electrocortical activity 

changes according to the motor task executed. Recently, Brain Computer Interfaces have emerged as a 

new rehabilitation therapy to restore motor functions in people with gait deficiencies, by involving the 

CNS to activate external devices. BCIs have been widely studied mostly in the field of post-stroke gait 

therapy. This growth of this technology is mainly due to the capability of directly control rehabilitation 

devices and to provide feedback to the user based on brain activity.  

Recently, steady state visual evoked potentials (SSVEPs) have been proposed to control lower-

limb exoskeletons. However, SSVEPs is an indirect way of interfacing brain signals with machine and 

they do not reflect real human intention and motor control. On the other hand, intention detection of 

movement and gait adaptation is well accepted as the best way to successfully integrate a lower limb 

robotic system. Nevertheless, this depends on decoding EEG signal mainly from motor, premotor and 

frontal cortex.  

As previously said, chapter six, evaluates gait adaptation where subjects follow a rhythmic tone 

that alternates between three modes of slow, normal and fast pace. The EEG signal is simultaneously 

recorded via wireless devices. Here, contrary to previous studies, no treadmill or specialized equipment 

is used, allowing the investigation of gait adaptation in more natural settings. Gait characteristics are 

captured based on a single RGB camera. Subsequently, gait characteristic and reaction time information 

are used to extract gait adaptation steps versus non-gait adaptation steps. EEG is pre-processed with a 

bandpass filter and independent component analysis (ICA) to remove motion related artefacts and 

subsequently the signal is epoched based on right/left heel strikes. Finally, EEG gait adaptation 

characteristics are investigated based on two classification problems, with two classes: i) right versus 

left gait cycle classification and ii) adaptation versus non-adaptation steps. Features were extracted based 

on common spatial patterns (CSP) and regularized common spatial patterns (RCSP). Results show that 
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it is possible to successfully discriminate adaptation versus non-adaptation with more than 90% testing 

accuracy.  
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2. Background 
 

2.1 Gait 
 

Locomotion is defined as the capability of an organism to move between places. It is a complex 

sequence of repetitive movements, which requires the activation of a neural mechanism and the 

musculoskeletal system. In particular, human locomotion is a process in which the upright and moving 

body is sustained by the two legs, alternatively, to maintain balance, while advancing. During this 

process, humans’ limbs follow different configurations of movement. Consequently, gait may be defined 

as the pattern of how a person walks, or as the bipedal forward propulsion of the human body with 

alternate movements of different parts of the body.  

Gait can be explained based on the Inverted Pendulum (IP) principle [3] [4]. This model has 

been extensively used to describe human locomotion, mainly in the fields of robotics and biomechanics 

[5] [6]. The IP model states that the leg acts like a pendulum, describing an arc. During single support, 

the stance leg is relatively straight and supports the centre of mass (COM), located near the hip, and the 

ground reaction force is directed from the centre of pressure to the COM.  The COM moves in a sequence 

of arcs described by each single support phase. This model also states that walking can be performed 

without muscle actuation, since no work is performed in the COM. 

In 1953, Saunders and Inman recognised several elements of gait, namely the pelvic rotation, 

pelvic tilt, knee and hip flexion, knee and ankle interaction and lateral pelvic displacement. This 

elements may be useful to determine whether a pattern is normal or pathological [7]. Several factors 

may contribute to locomotor disabilities or gait malfunctions, for instance, abnormal gait patterns may 

be due to early medical conditions, such as cerebral palsy, or to later injuries or illnesses, such as stroke, 

Parkinson or traumatic brain injuries. Gait disorders are common in the elderly population and are 

frequently associated with reduced mobility, regular falls, depressed mood and consequently a poor 

quality of life. It is evident that the occurrence of gait disorders increases with age. It is estimated that 

around 10% of people between the ages of 60 and 69 years suffer from any kind of gait disorder and 

this number increases to more than 60% in people over 80 years [8].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Inverted Pendulum Principle. The IP principle states that the stance leg acts like a pendulum, describing an arc. 
During single support, the stance leg is relatively straight and supports the COM, represented in red. The COM moves in a 

sequence of arcs described by each single support phase. Adapted from [2]. 
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2.1.1 Gait Cycle 

 

The gait cycle is the time interval between two consecutive events of the actions of walking and 

may be allocated between two distinct phases: the stance and swing phase. The first phase, which 

represents approximately 60% of the gait cycle, is divided into initial contact or heel strike, loading 

response, mid-stance, terminal stance and pre-swing. The second phase is divided into initial swing or 

toe-off, mid-swing (tibia vertical) and terminal swing (figure 2.1). The heel strike is a short period that 

starts when the foot touches the ground. The ankle moves from a neutral to a plantar flexion and the 

knee flexion begins.  In the loading response phase, or foot flat, the body continues in pronation to 

absorb the impact of the foot. During mid-stance the body is supported by one single leg and moves 

forward. Afterwards, the heel leaves the floor, which marks the beginning of the terminal stance. In the 

pre-swing/toe-off phase, the hip becomes less extended and the toes leave the ground. In the mid-swing 

phase, the hip and the knee flexes. Lastly, in the terminal swing phase there is an extension of the knee 

followed by a neutral position of the ankle [9]. The gait cycle may also be described using a basic 

terminology, using some important measures, as the walking speed, cadence (number of steps per unit 

of time), walking base width (measured from midpoint to midpoint of both heels), step length and stride 

length (linear distance walked during one gait cycle), like is shown in figure 2.2 [10] [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Terminology of the phases of the gait cycle. The gait cycle may be allocated between two distinct phases: the 
stance and swing phase. The first phase is divided into heel strike, loading response, mid-stance, terminal stance and pre-swing. 
The second phase is divided into toe-off, mid-swing and terminal swing. Adapted from [1]. 

Figure 2.3. Measures during a gait cycle. The gait cycle may be described using a basic terminology, using the walking speed, 
cadence, walking base width, step length and stride length. Adapted from [1]  
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2.1.2 Abnormal Gait  

 

Pathological or abnormal gait is an altered gait pattern and occurs when a person is not able to 

walk in the usual way, due to injuries, diseases or other underlying conditions. The changes in gait 

patterns can be divided into neurological or musculoskeletal causes. The musculoskeletal causes of 

abnormal gait patterns are mainly due to bone or muscle diseases or conditions like hip, knee, foot and 

ankle pathologies, injuries, leg length inconsistency or pain (antalgic gait).   On the contrary, a wide 

number of neurological conditions can also cause an abnormal gait patterns, like stroke, cerebral palsy 

and Parkinson disease.  

Pathological gait due to neurological conditions is mainly divided in hemiplegic, diplegic, 

Parkinsonian, ataxic, sensory, myopathic and neuropathic gait. The most common neurological origin 

pathological gait is the hemiplegic gait, which is usually the result of a stroke. This type of gait is mainly 

characterized by the loss of function in some muscles of one leg, while the other leg remains normal or 

practically normal. Here, the lower limb rotates internally, and the affected leg moves in a semicircle 

(circumduction). Contrary to the hemiplegic gait, the diplegic gait is associated with a spasticity of both 

legs and is mainly characterized by a hip and knee flexion and by and extreme tension of hip adductors. 

This type of gait is a common manifestation of cerebral palsy.  Parkinson disease may be recognized by 

the Parkinsonian gait, which is characterized by the reduced arm swing and the slow movements. In this 

case, people are bent with the head and neck forward and walk with small steps. Ataxic gait is described 

by an incoordination of steps, with a variable foot placement. This gait it usually seen in cerebral 

diseases, but it may also be identified in patients with alcohol dependency. People who suffer from 

sensory disturbances tend to present a sensory gait, which is characterized by high steps and by and 

exacerbated force of the foot on the ground, in an attempt to gain sensory feedback.  The myopathic gait 

occurs due to a weakness on one side of the pelvis which leads to a drop in the pelvis while walking 

(Trendelenburg sign). This gait is perceived in patients with muscular dystrophy. Lastly, the neuropathic 

gait is seen in patients with a weakness of foot dorsiflexion, also called, foot drop. The patients lift their 

legs high while walking, so that the foot does not drag on the floor [9]. 

 

2.1.3 Gait Analysis 

 

Gait analysis is defined as the methodical study of human locomotion. This systematic 

evaluation of bipedal locomotion comprises the measurement, description, and assessment of variables 

that characterize human walking. As a result, it is possible to identify the gait phase and kinetic 

parameters of human gait and assess the musculoskeletal functions and disease progression [11]. 

Pathological gait may reflect an extensive number of underlying medical conditions, like Parkinson, 

stroke or multiple sclerosis. It is important to mention that the study of gait, not only allows the diagnoses 

of certain pathologies, but it is useful to study intervention strategies and rehabilitation. Besides the 

clinical applications, gait analysis can also be used in the areas of sports, forensics and comparative 

biomechanics, in order to study the gait of animals and understand the locomotion patterns of different 

species. 

Gait analysis has caught the interest of numerous researchers, since it is an essential method to 

study human locomotion. The way a person moves the body through the two phases of the gait cycle, 

provides information to diagnose a gait abnormality. This process is known as observational gait 

analysis. Several parameters are evaluated during observational gait analysis, namely the step and stride 

length, speed, trunk rotation and arm swing. Conventionally gait analysis is conducted subjectively with 

observational protocols. However, this traditional way keeps updating and have been replaced by more 

objective and feasible methods that use optical tracking, cameras, force plates and wearable sensors, in 

specialized laboratories for this type of analyses.  
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These instruments are used to evaluate basic gait parameters, such as stride length, velocity and 

cadence, the forces and movements of the joints, the muscle activity and the velocity and acceleration 

of the body. The stride length is defined as the distance between two successive placements of the same 

foot and comprises two step lengths, right and left. In abnormal gait, the right and left steps show 

different lengths. The cadence is the number of steps in a certain amount of time and is usually expressed 

in steps per minute. The velocity is the distance walked in a given time and is expressed in meters per 

seconds. These parameters change according to certain conditions or locomotor disabilities. Gait 

symmetry is another useful indicator of normal or abnormal gait. In healthy subjects, it is expected the 

gait to be symmetric, while in abnormal or pathological locomotion, the gait is asymmetrical [12].  

The methods used to study gait analysis can be classified in laboratory-based analysis or non-

wearable methods and wearable methods. Laboratory based analysis required the use of specialized 

facilities and equipment. On the contrary, wearable systems allow the study of gait in a more natural 

environment and during everyday activities.  

In terms of laboratory-based analysis, a substantial part of the methods used is based on image 

and video information from video sequences. Multi-camera systems are the state-of-the-art in measuring 

lower limb kinematics . They are usually based on the tracking of reflective skin markers. Although, 

these systems are very accurate, their use is limited in large clinics and specialised laboratories. The use 

of floor sensors is also very common. The sensors are placed in the floor or instrumented treadmill and 

gait is evaluated when the subject walks, exerting a force or pressure in the sensors. Floor sensors can 

be divided in force platforms or pressure sensors. The later does not allow a direct measurement of the 

force.  The force exerted on the floor is designated by Ground Reaction Forces (GRFs) and is considered 

in several gait analysis studies because they are related to the load exerted to the joins [13]. GFRs can 

also be measured with pressure insoles, which are devices that record and measure the pressure 

distribution under the foot. This method allows a complete measure of the GRFs outside the laboratory 

and without the use of force plates [14] [15]. 

Wearable sensors’ configurations consist from one or multiple sensors, which are attached to 

the body, to measure acceleration, pressure or angular rate. The recent technological advances in 

wireless communication and wearable sensing technologies, allows small, lightweight and continuous 

monitoring devices for gait analysis, in a wide range of environments. In 2005, Jovanov et al designed 

a device that can be combined into a Wireless Body Area Network, a technology for computer-assisted 

physical rehabilitation and ambulatory monitoring [16]. Later, in 2008, a wearable system called 

“GaitShoe” was developed to offer gait analysis outside the laboratories, using multiple sensors, 

accelerometers and gyroscopes. This wireless device was built to perform gait analysis in any 

environment and during extended periods, without disturbing the subject [17]. Lately, inertial sensors 

have also been successfully used to study human gait. These sensors can be attached to any part of the 

body and use a group of accelerometers, gyroscopes and magnetometers to measure the velocity, 

acceleration, orientation and gravitational forces. One of the most common sensors in this field is the 

Inertial Measurement Unit (IMU), which comprises several sensors in a single device. Anna et al, in 

2013, proposed a system, with inertial sensors, to evaluate gait symmetry and normal gait.  This study 

was validated against kinematic measurements in a specialized laboratory, showing a good correlation 

between the methods [18]. More recently, in 2017, Tunca et al developed a study proposing an IMU-

based gait analysis device, which is able to identify several neurological conditions related to gait 

abnormalities in a natural environment [19]. Goniometers are another type of wearable sensors used to 

evaluate gait. These sensors are used to measure the angles of different joints, such as ankles, knees or 

hips. The most common type are the flexible strain gauge goniometers, which are based on the flexion 

of the sensor [20]. Lately, some digital goniometers have also been designed to measure human joints 

positions [21]. These sensors have a limited usage due to the complexity of how to balance the number 

of sensors required with the amount of information captured, since the sensors capture much more 
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information than is actually needed. To avoid these problems, studies have been developed in order to 

integrate all the capabilities into a single wireless sensor. Recently, the team from The Hamlyn Centre 

(Imperial College London) developed an innovative way to acquire gait data and to detect walking gait 

impairment, based on just one sensor attached to the ear of the patient, called ear-worn Activity 

Recognition (e-AR) sensor. The validation of the sensor was done using a force-plate instrumented 

treadmill. This technology promises to allow patients to be more independent while their condition is 

monitored 24/7 [22] [23]. In a recent study (2017), The Hamlyn Centre group also proposed an 

innovative integrated approach, using the e-AR sensor combined with a single video camera, to estimate 

the interaction of ground reaction forces and ankle dynamics during normal and abnormal walking [24]. 

Recently, Yang et al proposed a video acquisition system with a single camera to evaluate human gait 

function. The results showed that the portable camera and the system were able to effectively detect gait 

events, offering a useful and inexpensive solution for gait analysis outside a specialized laboratory [24] 

[25] [26].   
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2.2 Gait Adaptation 
 

Gait adaptation involves the ability to change walking direction and/or speed to avoid obstacles, 

for example. Deficiency in walking adaptation indicates a risk factor of falling in the elderly population 

or patients with Parkinson or stroke. Moreover, the understanding of gait adaptation may suggest 

suitable interventions for an effective gait rehabilitation. 

Gait adaptation plays an important role in neurorehabilitation since it perturbs neuronal 

dynamics and allows patients to restore motor function. Additionally, intention detection of movement 

and gait adaptation is a successful way to integrate a lower limb robotic system in patient’s 

rehabilitation.  

Numerous researches have shown that auditory rhythm has a deep effect on the motor system. 

These studies show that there is a strong connectivity across cortical, subcortical, and spinal levels 

between the auditory and motor systems [27]. Based on these evidences, several gait adaptation studies 

focus on auditory rhythms, where patients try to couple heel strikes and pacing tones, improving the gait 

coordination. Consequently, gait adaptation based on split-zone treadmill exercises and auditory rhythm 

has shown to improve gait symmetry in patients with stroke, cerebral palsy and Parkinson disease [27] 

[28] [29] and is an effective way to adapt stride frequency and improve gait coordination in people after 

stroke [30].  

 

2.2.1 Gait Rehabilitation and Robotics 

 

The main goal of gait rehabilitation is to help a patient to recover the locomotor abilities, after 

suffering an injury, illness or disease, in order to enhance the quality of life. Gait training focus mainly 

in re-training the nervous system, re-building the muscle strength and improving balance. From a clinical 

perspective, the key to gait recovery is neuroplasticity, which is defined as an adaptive alteration in brain 

structure in response to a modification in the environment with a consequent change in function [44].  

Following a neurological injury, gait rehabilitation has shown to have numerous therapeutic benefits.  

Several studies proved that gait rehabilitation should focus on repetitive movement patterns, since 

repetitive practice fortifies the neural connections involved in a motor task through reinforcement 

learning. It was also proved that the effectiveness of the practice is higher when it task-specific [45]. 

Gait rehabilitation modalities can be divided into conventional manual gait rehabilitation, 

bodyweight support (BWS) treadmill gait rehabilitation and robot-assisted gait rehabilitation. 

Conventional gait rehabilitation is performed by a physical therapist who develop exercises to strength 

and practice one movement at time. In this type of rehabilitation, the patient can use parallel bars for an 

extra support while walking, which allows then to put more weight on their legs and progressively 

recover the walking ability. A more sophisticated therapy developed for the purpose of gait rehabilitation 

is partial bodyweight support combined with treadmill training. In this kind of therapy, the patient is 

partially suspended with a proper system in order to maintain the upright posture and balance during 

treadmill walking. As soon as the patient coordination and balance begin to improve, the amount of 

support can decrease gradually. BWS allows the patient to develop more effective movement strategies 

since it reduces the demands on muscles. This controlled environment may also increase patient 

confidence, since it provides a secure way to practice walking [46]. An emerging technique in field of 

gait rehabilitation is the robot-assisted training. Robotic devices offer a safer and more intensive 

rehabilitation to patients with motor disabilities [47]. 
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2.2.2 Robotic Rehabilitation Devices 

 

Conventional gait rehabilitation, usually, requires several therapists together to manually assist 

the legs and torso during gait training, which can be quite intense and exhaustive, and it cannot be carried 

out for a long period. Robotic rehabilitation can provide greater duration of reliable and repetitive motor 

practise, replacing the physical effort of a therapist. Additionally, robotic rehabilitation can precisely 

measure and track patient’s motor recovery along rehabilitation. Robotic gait technology has shown to 

have positive effects on clinical outcomes of patients with stroke, spinal cord injury and Parkinson 

disease, when incorporated into a multi-modality rehabilitation approach, with conventional 

physiotherapy [48] [49] [50].  

Regarding robotic devices designed for the lower limbs, treadmill robotic gait training devices 

were the first to be designed, specifically the LokomatTM (Hocoma) [51] and the Lower Extremity 

Powered Exoskeleton (LOPESTM) [52].  The aim of these devices is to promote normal gait patterns, 

guiding the lower limbs through programmed gait cycles. In a research that evaluated the effectiveness 

of robotic-assisted gait training (Lokomat device), in patients with stroke, the results showed that 

patients trained with the robotic device combined with regular physiotherapy showed more promising 

outcomes than patients trained only with regular physiotherapy [53].  
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2.3 Neurophysiology of gait and gait adaptation  
 

Locomotion is the result of a complex combination that involves not only the muscles, bones 

and joints but also involves the brain, spinal cord and peripheral nerves. Movements are generated by 

specific arrangements of nerve cells named Central Pattern Generators (CPGs). These cells contain the 

necessary information to activate the motor neurons, in order to generate motor patterns.  CPGs that 

generate rhythmic movements, such as locomotor CPGs are localized in the spinal cord [31].  

Although CPGs play an important role in walking function, human walking is significantly 

influenced by the supraspinal centres. The motor cortex have been identified to have a particular 

importance in gait regulation, specifically in the supplementary motor area and the prefrontal cortex 

[32].  The cerebellum has also been known to control posture and gait. Lesions in this area may cause 

incoordination of the muscles involved in locomotion, and may result in irregular gait patterns [33]. 

 

2.3.1 EEG in Gait Analysis 

 

Carlo Matteucci and Emil Du Bois-Reymond, who firstly registered the electrical signals 

arousing from muscle nerves, established the concept of neurophysiology.  However, was Hans Berger 

who discovered the existence of human EEG signals.  

The central nervous system (CNS) is mainly composed by nerve and glia cells. Nerve cells 

consists in axons, dendrites and cell bodies. CNS activity is mostly related with the synaptic currents 

verified between axons and dendrites, or dendrites and dendrites of cells. An action potential (AP) is the 

information transmitted by a nerve cell. These potentials arise from a transfer of ions through the 

membrane, which means that the membrane potential suffers a temporary change during an action 

potential.  

Excitable cells have voltage-gated channels, particularly, sodium (Na+) and potassium (K+) 

channels. These channels open and close according to the membrane voltage. APs are produced due to 

the action of both sodium and potassium ions and, usually, Na+ has a higher concentration outside the 

cell and lower inside. The opening of sodium channels, with positive charge, depolarizes the membrane 

potential, turning the membrane potential more positive and consequently, producing a spike. Then, 

after the spike, the membrane potential repolarizes. Later, the potential decreases to values lower than 

the resting potential, returning to normal after a period.  After an AP, the cell membrane cannot 

immediately produce a second AP, since the nerves need nearly two milliseconds before another 

stimulus (refractory period) [34]. The amplitude of an AP, for a human being, extends from 

approximately −60 mV to 10 mV. APs may be originated from different types of stimulus, such as light, 

pressure or chemical. Particularly, APs from the nerve cells on the CNS are mainly originated due to 

chemical stimulus in the synapses. These stimuli need to be higher than a certain level in order to produce 

an AP.  The currents generated in the dendrites, during synaptic excitations, in the cerebral cortex 

generate a magnetic and an electrical field. An EEG signal is the measurement of these currents, which 

can be detected with electrodes placed on the scalp.  
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2.3.2 EEG Recording and Measurement 

 

The growing knowledge of the human body is mainly due to the use of signals and images, 

which allow the diagnose of a vast range of conditions and diseases. Like previously said, the first neural 

electrical activities were registered using a galvanometer.  Later, more recent systems used a set of 

electrodes, amplifiers, filters and a needle register. Therefore, in order to analyse the EEG signals, the 

signals need to be in a digital form, which requires sampling, quantization and encoding of the signals. 

The conversion from analogue to digital is achieved using analogue to digital converters (ADC’s). 

The electrodes used in the EEG recording are crucial for the acquisition of high-quality data. 

Different type of electrodes can be used, such as disposable electrodes, needle electrodes, reusable disc 

electrodes and electrode caps.  

Usually, EEG is recorded with wet (gel-based) electrodes, in order to have a low electrode-skin 

impedance. In most EEG recordings, passive electrodes are used. These electrodes are easy to 

manufacture and maintain and have a low price. However, they require special skin preparation to reduce 

the impedance.  On the other hand, active electrodes, requires no skin preparation. These electrodes have 

an amplifier inside and the gel is inserted between the electrode and the skin. Although, gel-based active 

electrodes have a strong signal quality, the main disadvantage is the long montage time and the need to 

wash the cap and the user's hair after the recording. During long recordings, gel may also dry out, 

resulting in a poor signal quality. Dry electrodes eliminate the need for gel, enabling a faster setup time 

and users’ comfort during the recordings. The main disadvantage is the electrode-skin impedance, which 

may lead to a significant increase in the noise and interference. Recently, active electrodes enable scalp 

EEG measurement with dry electrodes, improving user comfort and long-term monitoring [35].   

The conventional electrode position, also called the 10-20 system, describes the conventional 

electrode positioning for 21 electrodes. This system places the electrodes considering the relationship 

between their location and the corresponding cerebral cortex areas. To guarantee the correct electrode 

positioning, two anatomical reference points are considered. These points are the depressed area 

between the eyes (nasion), and the lowest point of the skull, located in the posterior part of the head 

(inion), like is shown in figure 2.5 

 

Figure 2.4. Approximate plot of an action potential and its various phases. A stimulus is applied raising the membrane potential 
abruptly.  After the stimulus, the membrane potential rapidly rises to a peak potential. Later, the potential drops and the resting 
potential is re-established.  
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2.3.3 Brain Rhythms 

 

Conventionally, the frequency range of an EEG signal varies from 0.5 Hz to 100 Hz, depending 

on the brain activity and physiological state of the subject. A rhythmic or repetitive neural activity in 

the CNS is called a neural oscillation or a brainwave. It is possible to identify five major brain waves 

types, mainly distinguished by their frequency ranges (delta, theta, alpha, beta and gamma waves). 

Delta (𝛿) waves have a frequency of oscillation between 0.5-4 Hz and tend to be the highest in 

amplitude. These waves appear mainly during deep sleep. Theta (𝜃) are located in the range of 4-7.5 Hz 

and occur most often in sleep but are also dominant in deep meditation. Alpha (𝛼) waves are originated 

in the occipital lobe mainly during an awake and restless state with closed eyes, being reduced with open 

eyes or during sleep. These waves are in the frequency range of 8-13 Hz. There is an alpha rhythm called 

mu rhythm (𝜇), located in the frequency range of 7.5 and 12.5 Hz and found over the motor cortex. This 

rhythm is observed mainly in resting conditions and is supressed when a person executes or observes 

another person executing a motor action.  Beta waves (𝛽) have a range between 14-26 Hz and dominate 

our normal waking state of consciousness. These waves are also associated with attention states, like 

active thinking. Finally, the frequencies above 30 Hz corresponds to gamma waves (𝛾), the waves with 

the highest amplitudes. The occurrence of these waves is rare. A particular brain wave is the sensory 

motor rhythm, which is located in the range of 13 to 15 Hz. When the sensory or motor areas are 

activated, for example, during motor tasks or motor imagery, the amplitude of this rhythm usually 

decreases. The changes in the μ and β rhythm amplitudes are denoted as event-related desynchronization 

(ERD) and event-related synchronization (ERS). These changes are normally associated with 

movement, motor imagery and sensation.  

 

2.3.4 Motor Cortex 

 

The motor cortex is a region of the cerebral cortex responsible for the execution of voluntary 

movements, planning and movement control. This region is located in the frontal lobe, anterior to the 

central sulcus, and is composed by three different areas: the primary motor cortex, the premotor cortex 

and the supplementary motor area (SMA). The primary motor cortex is located in the precentral 

gyrus and is the main contributor in generating neural impulses. This area contains pyramidal neurons, 

or upper motor neurons, which are the first primary output of the motor system.  These neurons, form 

connections with lower motor neurons, which directly innervate the skeletal muscles, to produce a 

movement. Although the exact functions of the SMA and the premotor cortex are not yet fully 

Figure 2.5. The international standard electrode montage (10-20 system). This system places the EEG electrodes considering 
the relationship between their location and the corresponding cerebral cortex areas, based on two anatomical marks (nasion 
and inion). 
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understood, it is though that the SMA is mainly involved in movement planning and in the execution of 

sequences of movements. The premotor cortex is responsible for the preparation for movement, the 

incorporation of sensory cues during movement and the selection of actions based on behavioural 

context. Usually, the posterior parietal cortex is also considered to be part of the group of motor regions. 

Regarding motor actions, it is responsible for transforming multisensory information into motor 

commands and is responsible for some aspects of motor planning [36].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.5 Brain activity during gait and gait adaptation  

 

Recently, a growing number of studies investigate brain activity during human locomotion, 

particularly there has been an increasing interest in the use of EEG. Preceding studies found that cerebral 

activity increases during walking or preparation for walking and there is a significant activation of the 

sensorimotor area, during isolated leg or foot movements [37] [38]. Moreover, it is also reported that 

gait cycle phase is coupled with electrocortical activity during treadmill walking [15] and with the 

kinematics of the legs [39].  In previous studies, it was also reported that the power in the μ and β bands 

decreases during a voluntary execution of movements [40], while β band power increased is related to 

movement suppression [41]. Additionally, high γ amplitudes (60–80 Hz), located in central sensorimotor 

areas increase during walking, when compared to standing and even higher γ (70–90 Hz) amplitudes are 

modulated accordingly to the gait cycle, in the same areas [42]. It is also believed that neuronal activity 

has different functional roles according to the frequency ranges, which may provide finer details on 

which brain network features are important in gait control and allow the development of better and more 

specialised treatments [43]. In summary, EEG oscillations are mostly verified during movement 

conditions, whit the suppression of the μ and β bands, which have their amplitude modulated during the 

gait cycle phase.  

Regarding gait adaptation, it has been shown that the electrocortical activity observed differs 

according to the motor task executed. For example, if a subject walks in a narrow beam instead of a 

regular treadmill, the electrocortical activity shows a larger theta power in specific regions of the brain 

and a reduced alpha and beta-band power in the area of the sensorimotor cortices [44]. In another study, 

was showed an increased event-related potential (ERP) in the prefrontal cortex when a subject is 

stepping over obstacles [45]. In addition, it has been shown that there are two oscillatory networks 

Figure 2.6. Topography of the motor cortex and its different areas. The motor cortex is composed by the supplementary motor 
cortex (green), the primary motor cortex (blue) and the premotor cortex (yellow). Usually, the posterior parietal cortex (orange) 
is also considered a part of the motor cortex.  
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involved in gait adaptation. A motor μ and β decrease with movement execution and a frontal β band, 

which increases with cognitive control [46].  

Recently, it also became possible to study gait control with real time imaging, with the 

development of functional near-infrared spectroscopy (fNIRS). This technique showed that there is also 

a cortical involvement during tasks related to walking. For instance, when switching from a rest state to 

gait initiation, the activity of the premotor and prefrontal increases while continuous walking does not 

produce any cortical activation [47].  Furthermore, the prefrontal cortex has a bigger activation during 

precision stepping when compared to normal gait [48]. An earlier study, using single photon emission 

computed tomography (SPECT) showed an activation in multiple brain areas including the 

supplementary motor area, medial sensorimotor cortex, striatum, and cerebellum, which suggests that 

these regions may be involved in human gait [49]. Table 2.1 summarizes the results of several studies 

on gait and gait adaptation using different imaging modalities. 

 
Table 2.1. Summary of several studies on gait and gait adaptation using different imaging modalities and their key 
contributions. 

 

Paper 

Imaging 

Modality/ 

Number 

of 

Subjects 

Pre-processing 

methods 

Experimental 

Conditions 
Gait Key Contribution 

Alcock et al, 

2018 [50] 
- , 33 - 

Instrumented 

walkway  

Gait 

adaptation 

The    greatest   temporal-spatial 

adaptations were verified when 

participants crossed tall obstacles. 

Subjects adapted a wider step when 

crossing tall obstacles. 

 

Bruijn et al, 

2015 [51] 
EEG, 10 

- High-pass filter 

(3 Hz) 

- Band-stop filter 

(50, 100, 150, 

and 250 Hz) 

- Channel 

rejection 

- ICA 

Treadmill 

walking 

Stabilized 

and 

normal 

gait 

Increased beta band activity in the left 

premotor cortex during stabilization of 

gait. 

 

Dixon et al, 

2018 [52] 
- , 35 -  

Brick 

walkway and 

flat surface 

Gait 

adaptation 

Subjects increased hip flexion at foot-

strike, while decreasing ankle 

dorsiflexion, stability, symmetry, and 

consistency on uneven, compared to 

flat, surface. 

Older adults showed a larger increase 

in knee flexion. 

Only young adults modified their hip 

abduction angles. 

 

Fernandez 

et al, 2017 

[53] 

- , 14 - 

Pressure 

sensors 

walking 

Gait 

adaptation 

Involvement of the right cerebellar 

hemisphere in gait adaptation 

 

Fukuyama 

et al, 1997 

[49] 

SPECT, 

14 
- 

Natural 

walking 

Normal 

gait 

Activation in the SMA, primary 

sensorimotor area, striatum, cerebellar 

vermis and visual cortex. 

 

Gilbertson 

et al, 2005 

[41] 

EMG, 10 
- Bandpass filter 

(16-300 Hz). 

Isolated 

movements 
- 

β band power increased is related to 

movement suppression 
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Haefeli et 

al, 2011 

[45] 

EEG/ 

MEG, 12 

- EEG: bandpass 

filter (1-30 Hz); 

- Ocular artefacts 

removal; 

- EMG: bandpass 

filter (30-300 Hz). 

Treadmill 
walking 

Gait  
adaptation 

Increased ERP in the prefrontal cortex 
of the right hemisphere and a greater 
limb muscle EMG activity, during 
swing over obstacles when compared 
to normal walking. 

 

Koenraadt 

et al, 2014 

[48] 

fNIRS, 11 - 
Treadmill 

walking 

Normal 

and 

precision 

gait 

Bigger activation of the prefrontal 

cortex during precision stepping when 

compared to normal gait. 

 

Martelli et 

al, 2016 

[54] 

- , 18 - 

Active 

walking  

(A-TPAD 

device) 

 

Gait 

adaptation 

Adaptation of the balance recovery is 

verified only for perturbations 

sent along the AP directions; 

 

Muller-Putz 

et al, 2007 

[37] 

EEG, 8 
- Visual artefact 

detection.  

Foot 

movements 

(active, 

passive and 

imagined) 

- 

Significant activation of the 

sensorimotor area during isolated leg 

or foot movements. 

 

Presacco et 

al, 2011 

[39] 

EEG, 6 

- Channel rejection  

- Signals decimated 

by a factor of 5 (to 

100 Hz) and band-

pass filter (0.1–2 

Hz). 

 

Treadmill 

walking 

Normal 

and 

precision 

gait 

Involvement of a fronto-posterior 

cortical network in the control of 

precision and normal walking. 

Seeber et al, 

2015 [42] 
EEG, 10 

- Bandpass filter 

(1-200 Hz), notch 

filter (50 Hz and 

multiples); 

- Channel 

rejection; 

- Artefact rejection 

based on 

frequency 

spectral 

decomposition. 

Active 

walking 

(LokomatTM 

device) 

Normal 

gait 

High γ amplitudes (60–80 Hz), located 

in central sensorimotor areas increase 

during walking, when compared to 

standing, and even higher γ (70–90 

Hz) amplitudes are modulated 

accordingly to the gait cycle. 

 

Sipp et al, 

2013 [44] 
EEG, 26 - ICA. 

Treadmill 

walking  

Gait 

adaptation 

The electrocortical activity shows a 

larger theta power in specific regions 

(anterior cingulate, anterior parietal, 

superior dorsolateral-prefrontal, and 

medial sensorimotor cortex) and a 

reduced alpha and beta-band power in 

the sensorimotor cortices, when a 

subject walk in a narrow beam instead 

of a regular treadmill 

 

Suzuki et al, 

2004 [47] 
fNIRS, 9 - 

Treadmill 

walking 

Gait 

adaptation 

The prefrontal and premotor cortices 

are involved in adaptation of the 

locomotor speed on the treadmill. 

 

Wagner et 

al, 2016 

[46] 

EEG, 18 

- High pass filter (1 

Hz) and low pass 

filter (200 Hz); 

- Channel rejection; 

- ICA. 

Treadmill 

walking 

Gait 

adaptation 

There are two oscillatory networks 

involved in gait adaptation. A motor μ 

and β decrease with movement 

execution and a frontal β band, which 

increases with cognitive control. 
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Wieser et al, 

2010 [38] 
EEG, 20 

- Bandpass filter 

(1.5-30 Hz); 

- Visual artefact 

detection; 

- ICA. 

Assisted legs 

movements 

(Erigo device) 

- 

The primary somatosensory cortex, 

primary motor cortex and SMA play 

an essential role in cortical control of 

human gait. 

 

 

 

2.3.6 EEG Advantages and disadvantages 

 

Although several other methods to study brain functions exists, like functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG) or fNIRS, EEG still has a lot of 

advantages. One of the main advantages is the hardware cost, which is significantly lower than other 

techniques. Another important aspect is that EEG has a very high temporal resolution. EEG is non-

invasive and is quite tolerant during subject movements. This technique is also a useful tool to follow 

brain changes during life. When compared to other techniques, EEG is a quite simple equipment. 

Whereas fMRI and MEG need highly specialised infrastructures and equipment, EEG can be used at 

home and in natural environments, due to the small size and simple acquisition procedures. Like any 

other technique, EEG also has disadvantages like the low spatial resolution on the scalp and the poor 

signal-to-noise ratio (SNR). In addition, it cannot identify exact locations in the brain, and requires a 

correct and precise placement of electrodes around the scalp. 

 

2.3.7 BCI in gait rehabilitation 

 

Recently, brain–computer interfaces have been used as a rehabilitation therapy to restore the 

motor functions in people with gait impairments. This is accomplished by involving the CNS to activate 

external devices, according to the detected intention to walk [55]. Specifically, there has been a huge 

interest in the use of BCIs in post-stroke gait therapy [56] [57]. 

This technology can be used in two different approaches. It can be used to control directly the 

rehabilitation devices or to provide feedback to the user based on brain activity. The feedback is 

provided by output of rehabilitation devices, for example, the movement of a prosthetic limb, activated 

with brain activity. Later, when brain activation associated with motor intention is measured the 

information is extracted and used as a signal to control external devices. These approaches include 

mainly SMR [58]. For the purpose of BCI, the better neural control signal is found in the range of 8-13 

Hz (mu-rhythm), which is found in the central sensory-motor areas [59].  

BCI can also be combined with functional electrical stimulation (FES), allowing a more 

intentional control of relevant muscles. A study lead by Takahashi, tested the viability of an ERD-

modulated FES system, when compared with FES without ERD, to drive FES to the tibialis anterior 

muscle in a stroke patient. The results showed an augmented EMG activity in the muscle, and an 

increased dorsiflexion, after BMI-FES when compared to the isolated FES , which suggests that the 

coupling between motor intent and stimulation may have beneficial effects [60].  
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2.4 BCI analysis 
 

A Brain-Computer Interface is a system that acquires and analyses brain signals, translating 

then into commands that are related to an external device, in order to carry a desired action.  This system 

is completely independent of peripheral nerves and muscles, since it uses only the brain signals produced 

by the CNS.  The most common brain signals used to control a BCI are the electrical signals from brain 

activity, which are measured with electrodes on the scalp, although other signals can be used. The 

purpose of a BCI is to identify characteristics of brain signals, indicating what the user wants the BCI 

to do and translate these measurements into the desired device commands. The brain-signal 

characteristics used for this purpose are called features or signal features.   

A BCI system is composed by four different components, namely the signal acquisition, the 

feature extraction, the feature translation and the device output. The first step of a BCI system is the 

signal acquisition, which is the measurement of the brain signals.  The second step is the feature 

extraction, which extracts signal features that expresses what the user wants to do.  The signals recorded 

from the brain typically contain noise and irrelevant information, so it is important to distinguish 

pertinent signal characteristics that have correlate strongly with the intention of the user. The most 

common signal features used are amplitudes, latencies of event-evoked potentials or frequency power 

spectra. Feature extraction may be divided into three distinct steps: the signal conditioning, the 

extraction of the features and the feature conditioning. The first step, the signal conditioning or pre-

processing, improves the signal, eliminating some artefacts or irrelevant information or enhancing the 

most relevant features. Before the feature extraction, the signals are also segmented into consecutive 

sample blocks. After the signal conditioning, the feature extraction, extracts the chosen features. The 

last step, the feature conditioning, also known as post-processing, prepares the feature vector for the 

feature-translation step. After the extraction of the features, it is mandatory to translate them into 

appropriate device commands (feature translation). This step is accomplished using the translation 

algorithm. The central component of an effective translation algorithm is an appropriate model. A model 

is a mathematical concept of the relationship between independent variables (brain signal features) and 

dependent variables (the user’s intent). In the end of the process, the BCI system have to output a 

command into an external device, such as a cursor control, a robotic limb operation or other assistive 

device [61]. 

BCI systems can be categorized in open or closed-loop BCI systems, whether they provide or 

not feedback to the user. In an open-loop BCI, the participant does not receive feedback regarding the 

neural activity. On the contrary, in a closed-loop BCI, the user receives real-time feedback of the neural 

activity, which is useful to verify if the BCI has the desired output. An open and closed-loop BCI systems 

are illustrated in figure 2.5. 

When talking about BCI, the applications that come to mind are mostly clinical applications. 

This means that the main possible BCI users are people who are severely disabled or paralyzed, such as 

people with cerebral palsy, spinal cord injuries or amyotrophic lateral sclerosis (ALS). One of the 

possible uses of BCI is communication, for example, for people who suffer from “locked in” syndrome. 

Another main goal of BCI is to re-establish the motor control in paralyzed patients or the possibility to 

control the environment for disabled people. The restoration of independent locomotion is also a 

promising application of BCIs for paralyzed people. In addition, BCI systems may also be used in 

therapy, to help people who suffered a trauma to relearn motor function. On the other hand, for non-

clinical applications, BCI also has an extensive range of applications, for example, training and 

education or gaming and entertainment.   
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2.4.1 History of BCI 

 

Over the past years, increased BCI research has been determined by an enhanced understanding 

of the several brain functions and by a potent computer equipment. The term brain-computer interface 

remotes to 1977, when Jacques Vidal developed a BCI system based on visual evoked-potentials [62]. 

Later, in 1999, Chapin et al determined that motor cortex neurons can directly control a specific device 

[63]. Since then, there has been as increased interest in this technology, mainly to restore the motor 

capacities of severely disabled patients, particularly the ones suffering from ALS, stroke, cerebral palsy 

and spinal cord injury [64]. 

BCI’s can be categorized into two categories, whether they use non-invasive or invasive 

methods for electrophysiological recordings. Non-invasive BCI’s uses EEG recordings from the surface 

of the head, to control external devices, like computer cursors. Although this method provides an 

advantageous solution for paralyzed people, the neural signals have a limited bandwidth. Some systems 

are based on visual evoked potentials (VEPs), such as the P300 evoked potential, which occurs 

approximately 300 milliseconds after a significant event or stimulus. It is generated when a subject tries 

to discriminate stimulus.  The first use of the P300 potential was described by Farwell and Donchin, 

with a P300-based spelling device.  In this study, the letters of the alphabet are displayed on a computer 

screen and the subject focuses attention on the characters he wishes to communicate [65]. 

Another BCI system uses the sensorimotor rhythms (SMRs). These rhythms do not require a 

specific stimulus and changes with movement or even with the imagination of a specific movement. 

These rhythms were firstly used in 1991 to control a cursor, where subjects learned to change µ rhythm 

amplitude in order to reach a specific target [66]. Later, in 2008, was showed that an asynchronous EEG-

based BCI, allows subjects to control a wheelchair [67]. 

Although BCI systems may represent a huge advantage for disabled people, operate an EEG-

based-BCI required some practice, that can take many days, since the visual feedback is the crucial part 

of the training [68]. Some techniques have been developed to provide feedback to the BCI users. For 

example, virtual reality systems are advantageous to provide a useful feedback for BCI training [69].  

In addition to electrophysiological measures, different techniques have been explored, for instance, 

functional magnetic resonance, magnetoencephalography and fNIRS [70] [71] [72]. Contrary to non-

invasive BCI’s, invasive approaches use microelectrodes implanted in cortex to record the activity of 

single brain cells. 

Although the greater part of the research in this area have been made with animals, more recent 

studies have focused in human users. For example, Hochberg et al, aimed to restore the motor functions 

Figure 2.7. Diagram of a BCI system. Open-loop BCI represented in red and closed-loop BCI represented in blue. 
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in paralysed humans using microelectrodes implanted in motor cortex [73]. Different studies have 

shown that user can also control a cursor rapidly and accurately, with electrocorticographic activity 

recorded from the surface of the brain [74].  

 

2.4.2 Feature extraction 

  

Like previously said, the brain characteristics used in BCI, to translate a user’s intent, are called 

signal features. Most BCI’s extract several features simultaneously, which is referred as feature vector. 

Consequently, the feature extraction is defined as the process of discriminating the signal characteristics 

from unnecessary content and compact these features in a vector to be interpreted by a computer. In 

order to be effective for a BCI application, these features should be based on temporal, spatial or spectral 

characteristics.  

To identify temporal features, the methods of peak-picking/integration and correlation/template 

matching can be used. The Peak-Picking technique determines the minimum or maximum values of a 

signal, in a determined time block, after a stimulus, using the value as the feature for the time block 

considered. A more elaborated technique than the simple peak-picking is the integration, where the 

signal can also be integrated or averaged over the time block. This method was used by Farwell and 

Donchin, in 1988, during the development of the first P300-based BCI [65]. On the other hand, the 

Template-Matching uses the similarity or correlation of a response to a predefined template as a feature. 

The output value will be high when the response correlates with the template, and low when the 

segments differ from each other. In 2007, Krusienski et al used a μ-rhythm matching filter to control a 

BCI [75].  

Since brain activity oscillations are modulated in the form of amplitudes and frequencies, there is a 

great advantage of tracking the changes of this parameters, to extract spectral features. Although the 

most common spectral features extraction method is the Fast Fourier Transform (FFT), the band power 

and the autoregressive (AR) modelling can also be used. The band power method tracks amplitude 

modulations, at a specific band (frequency). Firstly, the frequency chosen is isolated, applying a 

bandpass filter, which produces a sinusoidal signal. Then, the absolute value is calculated, to produce 

only positive values and lastly, with a low-pass filter, the peaks are smoothed. The FFT method 

represents an implementation of the discrete Fourier transform. The FFT characterizes the frequency 

spectrum of a digital signal with a frequency resolution of FFT-points, or sample rate. Kelly et al used 

a method based on FFT in an independent BCI [76]. The AR modelling, like the Fourier transform, is 

used to calculate the frequency spectrum of a signal. However, in this method, the signal is generated 

passing white noise through an infinite impulse response (IIR) filter. Burke et al, applied the AR 

modelling for feature extraction during BCI analysis [77].   

In terms of time-frequency features, the wavelet analysis produces a time-frequency representation 

of the signal. When compared to FFT, wavelet analysis designs a filter to achieve an enhanced time-

frequency resolution. Qin et al developed a wavelet-based time-frequency analysis method for 

classification of MI tasks for BCI applications [78]. 

Lastly, the similarity features can be divided in three different methods, namely the Phase Locking 

Value (PLV), the coherence and the Mahalanobis Distance. The phase locking value (PLV) represents 

the value of the mean phase difference between two signals, that occupy the same frequency range.  PLV 

is useful to calculate the phase relationship among different EEG electrodes.  The PLV ranges from 

zero, when the phase is not coupled, to one, when the signals are phased locked with each other. Wei et 

al showed that coupling measures quantified by PLV are appropriate methods for feature extraction in 

BCIs [79]. The coherence is the measurement of the amplitude correlation between two signals in the 

same frequency band.  The value also varies from zero (no coherence) to one (highest coherence). To 

estimate the coherence, it is necessary a large number of observations. Therefore, this method is not 
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suitable for online BCI applications. Lastly, the Mahalanobis Distance measures the similarity between 

signal features and predefined distributions of those features.  

 

2.4.3 Common Spatial Pattern (CSP) 

 
2.4.3.1 CSP algorithm  

 

The Common Spatial Pattern method was suggested for the first time, for classification of EEG 

data, during imagined hands movements by H. Ramoser [80]. This algorithm extracts spatial filters that 

maximize the discriminability between two classes [81].  CSP uses spatial filters 𝑠 that maximize the 

following equations: 

𝐽(𝑠) =
𝑠𝑇𝑋1

𝑇𝑋1𝑠

𝑠𝑇𝑋2
𝑇𝑋2𝑠

=
𝑠𝑇𝐶1𝑠

𝑠𝑇𝐶2𝑠
 (2.1) 

 

𝑋𝑖 denotes the matrix 𝑘 × 𝑛 for class 𝑖, where 𝑘 is the number of samples and 𝑛 is the number 

of channels. 𝐶𝑖 is the covariance matrix of the EEG signal from class 𝑖. This problem is transformed to 

a standard eigenvalue problem by noting that it is equivalent to maximizing the next function derived 

based on the Lagrange method: 

𝐿(𝜆, 𝑠) = 𝑠𝑇𝐶1𝑠 − 𝜆(𝑠𝑇𝐶2𝑠 − 1) (2.2) 

The derivative of 𝐿 with respect to the filter 𝑠 equal 0, and therefore: 

𝐶2
−1𝐶1𝑠 =  𝜆𝑠 (2.3) 

The spatial filters that extremize equation 3 are the eigenvectors of 𝑀 =  𝐶2
−1𝐶1, corresponding 

to the largest and lowest eigenvalues. 

 

2.4.3.2 Regularized CSP (RCSP) 

 

Although CSP is known to be very popular and effective, it is also very affected with the noise 

and may overfit regularly, especially with small datasets [82]. Recently, to overcome these 

disadvantages of the CSP method, there has been a vast interest in adding prior information to the CSP 

learning process, using regularization terms [83] [84] [85]. The process of adding prior information into 

the CSP method can be achieved with two distinct manners. It can be done either at the covariance 

matrix estimation or at the level of the objective function, which imposes prior information on the spatial 

filters [81].  

So far, several RCSP algorithms were developed, namely, the composite CSP (CCSP), the 

regularized CSP with generic learning approach, the regularized CSP with diagonal loading and the 

invariant CSP. The goal of the composite CCSP, proposed by Kang et al [84], is to perform subject-to-

subject transfer, which regularizes the covariance matrix using other subjects’ data. The Regularized 

CSP with generic learning approach was proposed by Lu et al [83] and aims to regularize the covariance 

matrices using data from other subjects. The Regularized CSP with diagonal loading approach uses the 

Ledoit and Wolf’s method to  decrease the covariance matrix towards the identity matrix [86]. Lastly, 

the invariant CSP, regularizes the CSP objective function, to make filters that are invariant to a specific 

noise source. In this case, additional EEG measurements have to be performed in order to acquire the 

EEG signals and their covariance matrix. The present algorithm was proposed by Blankertz et al [87].  

Recently, Lotte et al [81]  proposed four new algorithms for CSP regularization: a CSP 

regularized with selected subjects, a Tikhonov and a weighted Tikhonov regularized CSP and a spatially 

regularized CSP. The Regularized CSP with selected subjects is similar to CCSP, with the difference 
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that it only uses the data from selected subjects instead of using all the subjects. To select the right 

number of subjects an algorithm was developed to select the subject to add or remove, to increase the 

accuracy of the BCI training. The CSP with Tikhonov Regularization is based on a regularization form, 

firstly introduced for regression problems, consisting in penalizing solutions with large weights [88].  

The CSP with weighted Tikhonov Regularization is similar to the CSP with Tikhonov Regularization, 

although it assumes that to classify a specific mental state, some channels are more important than others 

are. With weighted Tikhonov Regularization, different channels have different penalties, depending if 

they are likely to be useful or not. The Spatially Regularized CSP intends to use the spatial information 

of the EEG electrodes, obtaining filters for which neighbouring electrodes have relatively similar 

weights.  

 

2.4.4 Classification in BCI 

 

In order to have the desired output, the BCI systems has to identify brain patters produced by 

the user and translate them into commands. Usually, this pattern recognition depends on classification 

algorithms. The main classification algorithms used in BCI research can be separated into four different 

groups: linear classifiers, neural networks (NN), nonlinear Bayesian classifiers and Nearest Neighbour 

classifiers, although a combination of more than one classifier can also be used.   

 

2.4.4.1 Linear Classifiers 

 

These classifiers represent discriminant algorithms that use linear functions to discriminate 

between classes, being the prevalent type of classifiers used in BCI research. Linear classifiers can be 

divided into two main categories, namely the Linear Discriminant Analysis (LDA) and Support Vector 

Machine (SVM). 

LDA is based on a hyperplane that separates the data that represent different classes. This 

algorithm assumes a normal distribution of the data, with equivalent covariance matrix for both classes. 

The hyperplane is found by searching the projection that exploits the distance between the means of the 

two classes, minimizing the interclasses variance. The biggest advantages of this technique are the 

simplicity and the reduced computational power needed, what makes it appropriate for online BCI. On 

the other hand, the main disadvantage is that on nonlinear EEG, the linearity can provide poor results. 

LDA has been used mainly in MI-based BCI and P300 speller.  

On the other hand, SVM, also uses hyperplanes to categorize classes, although the hyperplane 

maximizes the boundaries. Due to this maximization, this technique has good generalization properties. 

SVM also allows the existence of outliers since it uses a regularization parameter. This classifier uses 

the ‘Kernel trick’ to create nonlinear decision boundaries. This consists in assigning the data to another 

space, using a kernel function 𝐾(𝑥, 𝑦). Usually, the kernel function used in BCI research is the Gaussian 

or Radial Basis Function (RBF) Kernel, defined by equation (2.4), where 𝑥 and 𝑦 represent the two 

samples and 𝜎 represents a free parameter. 

 

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 (
− |𝑥 − 𝑦|2

2𝜎2
) (2.4) 
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2.4.4.2 Neural Networks 

 

The second main category of classifiers are the Neural Networks, which are computing systems 

based on biological neural networks. This means that NN are an association of numerous artificial 

neurons, which allows to create nonlinear decisions. The most commonly used NN for BCI research is 

the Multilayer Perceptron, composed by a variable number of neurons’ layers (input layer, one or several 

hidden layers and an output layer). This technique is very flexible, since it can classify a variable number 

of classes and consequently adjust to a great variety of problems. Figure 2.10 represents a neural network 

composed with three different layers. 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.8. Linear Discriminant Analysis. LDA is based on a hyperplane that separates two classes, represented in blue and 
green. 

Figure 2.9. Support Vector Machine. SVM finds the optimal hyperplane for generalization, between two classes, represented 

in blue and green.  

Figure 2.10. Multiplayer Perceptron composed by three layers. Input layer (blue), hidden layer (green) and output layer 
(yellow). 

Margin 
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2.4.4.3 Nonlinear Bayesian classifiers  

 

The third category of classifiers includes the Nonlinear Bayesian classifiers (Bayes quadratic 

and Hidden Markov Model). Both classifiers produce nonlinear decision boundaries. Although these 

classifiers perform a more effective rejection of samples than discriminant classifiers, non-linear 

classifiers are not widespread as linear classifiers or NN among BCI research.  

 The Bayesian approach uses the concept of maximum likelihood to combine prior knowledge 

with newly acquired knowledge to produce a posterior probability, this means that it produces the model 

parameters that are most likely to be correct based on the available data. This classifiers has been applied 

successfully in motor imagery experiments [89]. 

 Hidden Markov Model (HMM) classifiers represent a probabilistic mechanism that gives the 

probability of observing a certain sequence of feature vectors. Later, the mechanism can model the 

probability of observing the feature vector. This model is appropriate for time series classification, for 

instance, to the classification of raw EEG signals [90]. 

 

2.4.4.4 Nearest Neighbour classifiers 

 

The last category includes the Nearest Neighbour classifiers, namely the k Nearest Neighbours 

and the Mahalanobis distance. These classifiers aim to assign a feature vector to a class based on its 

nearest neighbours.   

 The goal of k Nearest Neighbours is to allocate to a hidden point, the dominant class amongst 

its 𝑘 nearest neighbours. This technique is used only in BCI systems with low-dimensional feature 

vectors. With a high value of 𝑘 and sufficient training samples, this algorithm is capable to produce 

nonlinear decision boundaries, since kNN can approximate any function. 

In terms of the Mahalanobis distance, these classifiers assume a Gaussian distribution 

𝑁(𝜇𝑐 , 𝑀𝑐), for each sample of the class 𝑐. Later, a feature vector 𝑥 is allocated to the class that matches 

to the nearest sample. Although this classifier is barely used in BCI, it is appropriate for multiclass and 

asynchronous BCI systems. It can be mathematically represented by equation (2.5).  

 

 

𝑑𝑐(𝑥) =  √(𝑥 − 𝜇𝑐)𝑀𝑐
−1(𝑥 − 𝜇𝑐)𝑇   (2.5) 

 

 

2.4.4.5 Recently Developed Classifiers 

 

Although the previous classifiers are still used regularly, new algorithms have been designed 

and tested to classify EEG signals during BCI operations. These recently developed classifiers are 

divided into four categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep 

learning [91].  

Adaptive classifiers were proposed in the mid-2000s and are shown to be useful for offline 

analysis.  These classifiers re-estimate each parameter (weight attributed to each feature in a hyperplane) 

over time, as the new data become available, allowing the classifier to track changes in the feature 

distributions [92]. 

 Matrix and tensor classifiers can be subdivided into Riemannian geometry-based classification 

(RGC) and feature extraction and classification using tensors. RGC consists in mapping the data directly 

into a geometrical space with an appropriate metric. In this space, data can be manipulated for several 

purposes, such as averaging, smoothing and classifying. This method is based on the hypothesis that the 
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power and the spatial distribution of EEG sources can be considered fixed for a specific given mental 

state. Tensors, or multi-way arrays, provides a representation of EEG data for feature extraction, 

clustering and classification in BCI. This method is based on the generation of higher-order structured 

tensors from lower order data formats. The representation of BCI data with tensors is useful in 

attenuating the problems with small sample sizes, since the information about the structure of data is 

usually essential in tensors. Although tensors may represent a promising technique, this method requires 

more research in order to be applicable in practice.  

Transfer learning focuses on a set of methodologies where a model developed for a specific task 

is reused for a model on a second task. This method is particularly relevant in situations where exists 

abundant labelled data for one task and data are rare or expensive to acquire for the second task. The 

effectiveness of the method depends on how well-related the tasks are. Transfer learning has been mainly 

used during motor imagery tasks.  

Deep learning consists in a machine learning algorithm that uses a cascade of multiple layers of 

nonlinear processing units for feature extraction, where each successive layer uses the output from the 

previous layer as input. This learned features are related to increasing levels of concepts. This method 

is also able to learn in supervised (classification) and unsupervised (pattern analysis) manners [93]. Deep 

learning models are inspired by the information communication patterns in biological nervous systems.   
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2.4.5 BCI Open-source Software Platforms  

 

Over the past few years, computer power and complexity has increased and is, currently, enough 

for the majority of BCI requirements. Although MATLAB (The Mathworks, Inc.) is one of the most 

widespread platforms to develop a huge variety of scientific problems, software platforms specifically 

designed to the BCI research have been developed.  

In the present study, it was used OpenVibe, due to its numerous advantages, such as the user-

friendly interface and the capability of real-time processing and visualisation of brain signals.  OpenVibe 

platform includes two main user dedicated tools, namely, the acquisition server (figure 2.11) and the 

designer (figure 2.12). The acquisition server provides a user interface to connect the acquisition devices 

and to forward the acquired signals to OpenVibE applications in a standardized format. The acquisition 

server connects with the acquisition devices using modules called drivers. The  designer allows the user 

to create scenarios with a graphical language, used in all steps of the BCI [94]  

Table 2.2 summarizes several BCI platforms, their key features and their advantages compared 

to the other platforms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 2.11. OpenVibe Acquisition server. The acquisition server provides a user interface to connect the acquisition devices. 

Figure 2.12. OpenVibe scenario. The designer allows the user to create scenarios with a graphical user interface. 
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Table 2.2. Summary of several BCI platforms and their main features. 

Software Design Goal Main Features 
Programming 

Language 
Advantages 

OpenVibe 
[94] 

Acquisition, processing and 
visualization of cerebral 

data. 
 
Set of software modules that 
can be easily integrated to 
develop fully functional 
BCIs. 

Can be integrated with high-
level applications such as 
virtual reality environments. 

Graphical 
language 

- Allows users to create 
hardware-independent 
scenarios. 

-  
- Offers a wide range of 

visualization widgets such 
as raw signal display or 
time-frequency maps. 

-  
- Includes sample scenarios 

for BCIs or neurofeedback 
applications. 
 

BCI2000 

[95] 

Data acquisition, stimulus 
presentation and brain 
monitoring applications. 

Customizable 
auditory/visual stimulation 
that is synchronized with 

acquisition of brain signals 
and other inputs 
 

C++, Matlab 
and Python 
compatibility. 

Support for different data 
acquisition hardware 
 
Does not rely on third-party 
software 

TOBI  
[96] 

Facilitates distributed BCI 
research and interoperability 
between different BCI 
systems and platforms. 
 

Set of interfaces which 
connect parts of different 
BCI systems. 
 

C/C++ and 
Matlab 

Connect different BCI 
systems with a minimum of 
additional work. 

BCILAB 
[97] 

Rapid prototyping, real time 
testing, offline performance 
evaluation of new BCI 
applications, and 

comparative evaluation of 
BCI methods 

Emphasis on combining 
recent methods in machine 
learning, signal processing, 
statistical modelling, and 
electrophysiological 
imaging. 
 

Provides several 
frameworks to speed up 
incorporation and testing of 
new BCI methods 
 

Graphical and 
scripting 
(Matlab) user 

interface. 

Strong focus on recently 
published methods. 
 
High level of automation. 

 
Linkage to EEGLAB 

BCI++  
[98] 

Based on a sophisticated 
graphics engine which 
allows a rapid development 
of BCI systems.  

 

Consists of two functional 
modules that split the 
development of a BCI 

system into two parts. The 
first module is called HIM 
(Hardware Interface 
Module) and handles signal 
processing. The second 
module provides a graphical 
user interface (GUI). 
 

C/C++ and 
Matlab 

HIM supports several 
acquisition devices 

xBCI  
[99] 

Data processing, data 
acquisition, data 

visualization, experiment 
control, real time feedback 
presentation 

Easy-to-use system 
development. 
 
Extendable and modular 
system design (functional 
modules can be added by 
users). 

 

GNU C/C++ 

Supports multiple 
operating systems. 
 
Does not depend on any 
commercial software 
products 

BF ++  
[100] 

Provide tools for the 
implementation, modelling 

and data analysis of BCI 
systems. 
 

Create unique methods, 
terminologies, and tools 
independent from the 
specific protocols such as 
P300 or SSVEP. 
 

C++ 

Support for several file 
formats (BCI2000, GDF, 
Brain Vision Analyzer, 
MEG) 
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Pyff  

[101] 

Development of BCI 
feedback and stimulus 

applications as fast and easy 
as possible. 

Comes with a variety of 

ready-to-use experimental 
paradigms. 
 
Can be used as a platform to 
run neuroscientific 
experiments independent 
from BCI systems. 
 

Python 
Not tied to a special 

operating system. 

BioSig  
[102] 

Data acquisition, artefact 
processing, quality control, 
feature extraction, 
classification, modelling, 

and data visualization. 

A real-time BCI system 
implemented in Matlab 
(rtsBCI). 

C/C++ and 
Matlab 

Tools for different 
application areas 
(neuroinformatics, BCI, 
neurophysiology, 
psychology, cardiovascular 
systems, and sleep 
research) 

 
Almost fully automated 
data analysis 
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2.5 Motor Imagery 
 

An important practice in the field of BCI research is the modulation of SMR through motor 

imagery. Motor imagery based BCI relies on the concept of simulating an action mentally, without the 

actual performance of the movement.  Numerous studies showed that MI stimulates the same brain 

regions as the execution of the actual movement [103] [104]. MI patterns have been found not only in 

healthy people, but also in patients suffering from ALS, spinal cord injury and stroke [105] [106] [37] 

[107].  This technique can be used in patients without motor function since it does not need a motor 

input. 

Firstly, the studies involving MI focused mainly in the upper limbs movements, although, more 

recently, those studies also started to consider the lower limbs, in order to study and evaluate the human 

gait. In 2007, Baker et al conducted an experiment with fourteen healthy subjects who performed both 

MI and actual walking tasks. The results showed a high association between the imagined and the actual 

walking, proving that MI uses similar cerebral resources as actual gait [108]. Neuroimaging studies 

proved that MI is associated with the activation of several cerebral areas, such as the SMA, the inferior 

parietal cortex, the primary motor cortex, the inferior parietal cortex, the cerebellum and the basal 

ganglia [109]. The activation in MI differs also from distinct body parts.  MI of lower-limb and gait 

relies on a completely different cerebral network than MI of upper-limbs.  MI of the upper-limbs 

movements activates mainly the premotor cortex including the inferior frontal gyri, middle frontal gyrus, 

and precentral gyrus. On the other hand, MI of lower limb involves essentially the SMA, cerebellum, 

putamen, and parietal regions [110]. 

MI has been widely used in neurological and post-stroke rehabilitation. Dickstein et all 

described the use of this technique to recover or improve walking ability in patients with hemiparesis, 

suggesting that MI may be suitable for the walking rehabilitation in patients after stroke and that imagery 

practice should rely on specific impairments during gait [111]. A different study concluded that MI is 

more effective when combined with physical practice, which means that MI promotes leaning by 

reinforcing processes at the cortical level [112]. Several studies also showed that different types of 

imagined movements have a different spatial distribution. For example, µ (8-12Hz) and β (18-26Hz) 

rhythms reveal different areas of ERD concerning each state [40].  

Ramoser et al designed a spatial filter with the CSP method and demonstrated that this technique 

is useful to extract information from two classes of single-trial EEG [80]. 

MI faces a number of challenges associated with the detection of motor intention in MI tasks of 

upper and lower limbs even for just two classes [113] [114]. These challenges are, for example, the low 

signal decoding performance and a large inter-subject variability. The low processing speed limits the 

practical applications. This is due mainly because EEG signals are prone to contamination for a wide 

range of artefacts, such as blinking/movements of the eyes (EOG), heartbeats and electromyography 

(EMG). The number of channels also plays an important role in MI, since it is important to choose an 

optimal number of electrodes and their locations, to improve discrimination between classes. The use of 

small number of channels id advantageous since it helps to decrease the computational complexity and 

allows the development of methods for real-time feedback.  Although MI-based BCI is still not use in 

the real-life environment, it has a higher classification accuracy, in the order of 90%, for the 

classification of imagined left and right-hand movements. 
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2.6 Artefacts Removal 
 

During the recording of cerebral activity, EEG also records electrical activities that does not 

result from neurophysiological sources. This type of activity is named artefact. The main artefacts can 

be classified into patient-related or physiological artefacts and system or extraphysiologic artefacts. The 

physiologic artefacts are mainly caused by muscle activity, eye movements, pulse and respiration or 

skin artefacts. On the contrary, extraphysiologic artefacts are mainly due to electrodes, cable defects, 

electrical noise or movements in the environment. The huge variety of artefacts and their overlapping 

with the signal of interest makes difficult the task of recovering the EEG signal of neurophysiological 

origins. During BCI applications, artefacts can contaminate the EEG signal that the recovery of and 

worsen the classification sensitivity and specificity. Although, there is no common solution available 

for this problem, there is a wide range of methods used in artefact removal.  

Artefact removal consists in cancelling or correcting the artefacts without distorting the signal.  

One of the most common techniques to handle artefacts is based on rejecting or cancelling the data 

epochs identified as artefactual. The major disadvantage of this method is that it also removes important 

neurophysiological information. This may reduce the statistical power of BCI methods to detect features. 

Therefore, with the increased development of signal processing techniques, several methods have been 

developed.  

Another method for artefact removal is based on low, high or bandpass filters. Nevertheless, 

this method is only effective when the frequency band of the signals and the artefacts do not intersect. 

Usually, simple filtering is not considered for artefact removal, except for narrow band artefacts like the 

line noise (between 50 and 60 Hz). To make the process of artefact removal more efficient, several 

filtering techniques try to adapt the filter parameters. The principal filtering techniques used in this 

process are the adaptive filtering, the Wiener filtering and the Bayes filtering. An adaptive filter tries to 

adapt the filter parameters according to an optimization algorithm. Boudet et al, designed an adaptive 

filtering method based on CSP, to reduce ocular and muscular artefacts on EEG recordings [115] [116]. 

Linear regression methods were extensively used, particularly for eye interferences, due to their 

simplicity and the low computational power required. This technique assumes that each EEG channel 

comprises a clean EEG signal source and an artefacts source, available through a reference channel 

[117]. More advanced methods, such as blind source separation decompose the EEG data into other 

domains [118]. Assuming that the measured cerebral activity (𝑎(𝑡)) is represented by the sum of the 

actual cerebral activity (𝑐(𝑡))  and the noise (𝑑(𝑡)), the approach for artefact removal in EEG signals 

can be mathematically denoted by equation 2.1. 

𝐴 = 𝐵𝐶 + 𝐷 (2.6) 

Where 𝐴 is the EEG data and 𝑛 is the number of samples. 𝐵 represent an unidentified mixing 

matrix,  𝐶 is a matrix of unknown sources, and 𝐷 is the noise matrix [119]. Blind source separation 

(BSS) aims to calculate the matrix 𝐶, from equation (2.6), from the observations in 𝐴,  without a 

reference waveform. BSS techniques, such as ICA and PCA contemplate the information provided by 

all the channels [120].  Independent Component Analysis is the most common form of BSS used in 

removing artefacts from EEG data [121] [122]. This technique involves the extraction of maximally 

independent components (IC) from the EEG signal. Non-brain components are normally identified 

manually based on their frequency profile and their spatial distribution. Subsequently, they are removed 

and the EEG signal is reconstructed without their influence. ICA has several advantages compared to 

principal component analysis (PCA), which is based on an orthogonal decomposition of correlated 

variables in linearly, uncorrelated variables (Principal Components). This method was firstly proposed 

to remove ocular artefacts [123], but later it was shown that PCA cannot totally separate artefacts from 

cerebral activity, particularly when the amplitudes are similar [124].  
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Other source decomposition methods, decomposes each channel into waveforms, representing 

the signal or the artefacts. Wavelets and empirical mode decomposition (EMD) are examples of source 

decomposition techniques [125] [126] [127]. The Wavelet Transform is represented by the product of 

the signal 𝑓(𝑡) with the time scaled of the wavelet function 𝛹(𝑡), called mother wavelet. The WT 

decomposes the signal into several coefficients, for different scales, representing the similarity of the 

signal with the wavelet, at that scale. WT was used alone to automatically identify and remove ocular 

artefacts [128] or in combination with other techniques, such as ICA, to enhance the pre-processing of 

EEG signals [129]. 

Empirical mode decomposition decomposes a signal into a sum of its basis functions, called 

intrinsic mode functions. These functions can be calculated applying the Hilbert transform. This 

technique is mainly used to nonlinear signal processing or non-stationary signals. EMD has been used 

to remove ocular artefacts [130] [131] and muscle artefacts [132]. In the past years, researchers also 

tried to combine the advantages of several methods, to improve artefact detection. Mijović et al 

combined EMD and ICA to remove artefacts from single-channel recordings and Castellanos et al used 

ICA enhanced with WT for artefact suppression [133] [134].  

 

2.6.1 Artefacts Removal during walking 

 

Recently, there has been a huge interest in recording EEG during locomotion. This process 

induces several challenges, mainly due to motion artefacts and head acceleration and deceleration. 

Studies have shown that there is a correlation between the EEG amplitude and the head acceleration, 

and that motion artefacts related to gait may occur in a systematic pattern. Independent Component 

Analysis has shown to be a reasonable technique to identify motion artefacts in scalp EEG [135]. In 

2010, Gwin et al developed a channel-based artefact template regression method, with a spatial filter, to 

remove gait related movement artefacts, proving that EEG can be used to study human locomotion and 

that gait related artefacts can be minimized with a template regression procedure [136]. Recently, 

Oliveira et al proposed a channel rejection method to attenuate motion artefacts in EEG recording during 

walking activities. While, traditionally, bad channels are identified according to the range, standard 

deviation, kurtosis and correlation, this method aims to remove the channels carrying motion related 

artefacts that were not detected with the standard methods, for example, channels with artefacts locked 

to gait events [137]. In terms of real-time artefacts detection, Kim et al, developed a BCI system capable 

to detect gait phases and remove motion artefacts, while subjects walk in real environments. This study 

used human strides to train the BCI system, showing the possibility of using mobile and wireless BCI 

systems in real-life environments [138].  
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3. Pre-processing for BCI 
 

3.1 Filtering 
 

In order to use the EEG for further analysis, data should be pre-processed, in terms of filtering 

and artefact removal. EEG data was recorded from six healthy participants (3 males and 3 females, 25.5 

± 6.7453 years). It were used two g.tec Nautilus, EEG wireless acquisition systems with active-

electrodes: a 16-channels dry electrodes cap (g.Sahara) and a 32-channels wet electrodes cap 

(g.ladybird), with a sampling frequency of 250 Hz, placed accordingly to the 10-20 system. 

As previously mentioned, EEG signals may be extremely affected by noise and interference, 

which may result in artefactual recordings. Since most of the brain activity observed in the scalp has a 

frequency range of 3–40 Hz, it is useful to apply a bandpass filter to remove lower and higher 

frequencies. Usually, a notch filter is also applied, to reject the 60 Hz or 50 Hz power line noise.  

For the motor imagery study, the EEG signal was filtered based on a bandpass Butterworth filter 

(order 4) at 1-30 Hz. For the gait adaptation part, it was used a bandpass impulse response (FIR) filter 

of 3-45 Hz to filter the EEG signal.  

 

 

 

Figure 3.1. Motor imagery data with bandpass filtering at 1-30 Hz. 

Figure 3.2. Gait adaptation with bandpass filtering at 3-45 Hz. 
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Comparing figures 3.1 and 3.2 it is possible to verify that in the case of motor imagery, the 

bandpass filtering technique is sufficient to remove most of non-physiological artefacts, while in the 

gait adaptation part, the EEG signal is still highly contaminated by noise and interference. Contrary to 

the motor imagery study, where subjects were seated and still, during gait adaptation, subjects were 

asked to walk at different speeds, which induces several artefacts in the EEG signal, mainly motion 

artefacts. Consequently, to remove the influence of motion components it was used ICA, a common 

approach to remove gait-related movement artefacts [136] [135]. 

 

3.2 Artefacts Removal based on Independent Component Analysis (ICA)  
 

In this study, artefact removal was performed in Matlab R2017b (The Mathworks, Natick, MA), 

using scripts based on eeglab (Appendix A) [139]. The eeglab function runica.m performs the ICA 

decomposition using the Infomax ICA algorithm, proposed by Bell and Sejnowski, with the extended-

ICA algorithm of Lee [140] [141]. ICA involves the extraction of maximally independent components. 

Motion components were identified manually based on their frequency profile and spatial distribution 

and, subsequently, were removed and the EEG signal were reconstructed without their influence. 

 

3.2.1 Independent Component Analysis 

 

As previously mentioned, ICA involves the extraction of maximally independent components 

from the EEG signal. Considering observations of random variables (𝑎1(𝑡), … , a(𝑡)) , where 𝑡 

represents the time and 𝐵 is an unknown matrix and assuming that the variables are generated as a linear 

combination of ICs: 

 

(

𝑎1(𝑡)

𝑎2(𝑡)
⋮

 𝑎𝑛(𝑡)

) = 𝐵 (

𝑐1(𝑡)

𝑐2(𝑡)
⋮

 𝑐𝑛(𝑡)

) (3.1) 

 

 

ICA consists in estimating the matrix 𝐵 and the parameter 𝑐𝑖(𝑡) based only on the variable 𝑎𝑖(𝑡). 

In ICA, the number of ICs is the same as the number of observed variables. This technique is based on 

two main principles. The first principle states that ICA finds the matrix B so that for any 𝑖 ≠ 𝑗, the 

components 𝑐𝑖and 𝑐𝑗  and the transformed components are uncorrelated. The second principle is called 

the Maximum Nongaussianity, which finds the local maxima of nongaussianity of a linear combination, 

assuming that the variance of 𝑐 is constant.  

Figure 3.3 represents the scalp map projections of the ICA components. The Scalp Topographies 

illustrates the effects that independent components have on each electrode. The effects of ICs are shown 

with a colour scale, where green represents no effect and red and blue represent positive and negative 

contributions, respectively.  
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When looking for the ICA components to remove from the dataset, it is also useful to scroll 

through the ICA activations, which can identify components pointing for characteristic artefacts. As 

illustrated in figure 3.4, the first components reflect several types of artefacts and should be removed 

from the EEG dataset before further analysis. 

Figure 3.3. Scalp Topographies of the ICA components. Each scalp map illustrates the effects that independent components 
have on each electrode. The effect of independent components is represented with a colour scale, where green represents no 
effect and red and blue represent positive and negative contributions, respectively.   

Figure 3.4. ICA components activations. These representation of components helps to identify components pointing for 
characteristic artefacts. 
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To identify the components to remove it is important to label each IC to distinguish them as 

brain or non-brain sources. ICs can be labelled as brain, muscle, eye or heart components, and channel 

or line noise. The main characteristic of brain components is that the scalp topography often looks 

dipolar, which means that brain components creates a positive potential on one side of the equivalent 

current dipole and a negative potential on the other. These components also tend to have a low power at 

higher frequencies and the power spectrum decreases as frequency increases. Additionally, in brain 

components the power spectrum usually has a peak between 5 and 30 Hz, with 10 Hz (alpha frequency) 

being the most common.  

On the other hand, artefacts may be introduced by the muscle and eye movements, heart beat 

and so on. The muscle components represent the electrical fields generated by muscle activity. These 

activations usually are spread amongst higher frequencies (20 Hz and above). The eye components can 

be identified due to the characteristic scalp map, which shows a strong frontal projection. The decreasing 

EEG spectrum is also characteristic of an eye artefact. Power is also concentrated at low frequencies 

(below 5 Hz). Heart Components represent the electrical potentials generated by the heart. In this 

component, it is possible to observe a clear QRS complex in the data at about 1 Hz, in the component 

time series.  

 Independent Components representing channel noise are mainly characterized by the distinct 

scalp topography, which is only weighted on a single electrode. These components also show consistent 

artefacts in the component activations and the power spectrum is a decreasing curve. Furthermore, line 

noise is the contamination from the alternating current used in electronic equipment. These types of 

components are mostly identified due to a strong peak in power spectrum at 50 Hz or 60 Hz. Table 3.1 

illustrates the 2D topographies, continuous data and activity power spectrum for each IC.  
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ICA 

components 

2D 

topography 
Continuous data Activity power spectrum 

Brain 
component 

 
  

Eye 

component 

 
  

Heart 
Component 

 
  

Channel 

noise 

 
 

 

Line noise 

 
  

Muscle 

component 

 
  

Muscle 

component 

 
  

Table 3.1. Independent Components. ICs and corresponding 2D topographies, continuous data map and activity power 
spectrum.  
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3.3 Results 
 

3.3.1 Artefacts Removal based on ICA during Motor Imagery 

 

Although during motor imagery, the bandpass filtering technique is sufficient to remove most 

of non-physiological artefacts, ICA was performed to ensure a complete removal of the artefacts from 

the EEG data. Figure 3.5 and 3.6 illustrates the scalp topographies for the dry and wet systems, 

respectively and figure 3.7 shows the EEG signal after pre-processing techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. ICA components during motor imagery (subject 3) with the wet system. 

Figure 3.5. ICA components during motor imagery (subject 2), with the dry system. 
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3.3.2 Artefacts Removal based on ICA during Gait Adaptation 

 

As mentioned above, gait adaptation data is highly corrupted by noise and motion artefacts, as 

illustrated in figure 3.9.  Scalp topographies (figure 3.8) show that the first components comprise mainly 

motion artefacts and should be removed. Figure 3.10 shows the reconstructed EEG signal after the 

removal of the artefactual components.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. EEG signal after ICA (subject 3), with the wet system. 

Figure 3.8. ICA components during gait adaptation (subject 3). 
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3.4 Discussion 
 

Although there is not a standard solution for the removal of EEG artefacts, and especially motion 

artefacts, ICA is one of the most used techniques to remove gait-related movement artefacts. According 

to the previous figures, ICA seems to be useful to remove artefacts from the EEG data, both in the motor 

imagery and gait adaptation studies. During the MI study, the filtering technique removes most of non-

physiological artefacts, while in the gait adaptation part, the EEG signal is still extremely contaminated 

by noise and interference. Consequently, ICA is used mainly to remove the influence of motion and 

gait-related components. Highly corrupted components are easy to identify, mainly during walking 

conditions (figure 3.8), due to the abundance of motion artefacts. These results suggest that motion 

artefacts can be minimized using ICA and filtering techniques, for posterior use with BCI analysis.   

Figure 3.9. EEG signal before ICA (subject 3). 

Figure 3.10. EEG signal after ICA (subject 3). 
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4. Analysis of EEG signals based on time locked events 
 

As previously said, the changes in the μ (7.5-12.5 Hz) and β (14-26 Hz) rhythm amplitudes are 

denoted as event-related desynchronization (ERD) and event-related synchronization (ERS) and are 

mainly associated with movement and MI tasks. Movement or preparation for movement is typically 

accompanied by a decrease in mu and beta rhythms (ERD). On the opposite, rhythm increase (ERS) 

occurs after movement and with relaxation. Since ERD and ERS do not require actual movement and 

may occur with MI, they might support an independent BCI [40].  

Therefore, the study of EEG data may also be analysed in terms of event related EEG dynamics, 

which allows the study of time locked events, like left/right motor imagery or movements. In order to 

do so, the data epochs, which are time locked to events of interest, should be extracted from the filtered 

data. 

 

4.1 Methods 
 

EEG data was recorded from six healthy participants, two females and four males (27.5 ± 7.58 

years), with a 32-channels EEG wireless acquisition system (g.tec Nautilus) with active-electrodes 

(Ag/AgCl), and with a sampling frequency of 250 Hz. The EEG cap was placed accordingly to the 10-

20 system, ensuring that each channel had less than 30 Ω of impedance for all participants. EEG data 

was recorded with OpenVibe version 1.3 [94]. Similarly to the previous chapter, the analysis of EEG 

signals was performed in Matlab R2017b (The Mathworks, Natick, MA), using scripts based on eeglab 

(Appendix B).  

EEG data was epoched based on two events (left and right motor imagery or left and right 

movements), and each epoch has the duration of three seconds, after the event (when the subject is 

performing the MI task). After the preprocessing of EEG data, each epoch file was studied separetely 

by plotting power spectral maps.  

 

4.2 Results 
 

4.2.1 Power Spectrum Analysis 

 

The power spectral maps show the activated parts on the brain during a specific event (i.e. motor 

imagery or actual movement), where each colored trace represents the spectrum of the activity of data 

channels. Here, the power spectrum is analysed at 4, 8, 14 and 26 Hz, in order to study the scalp 

distribution of power at different brain rhythms. 
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Figure 4.2. Scalp distribution of power during right hand motor imagery for different brain rhythms (Wet system, subject 3).  

Figure 4.1. Scalp distribution of power during left hand motor imagery for different brain rhythms (Wet system, subject 3).  

Figure 4.3. Scalp distribution of power during left leg motor imagery for different brain rhythms (Wet system, subject 3).  
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Figure 4.4. Scalp distribution of power during right leg motor imagery for different brain rhythms (Wet system, subject 3).  

Figure 4.5 Scalp distribution of power during left leg movement for different brain rhythms (Wet system, subject 3).  

Figure 4.6 Scalp distribution of power during right leg movement for different brain rhythms (Wet system, subject 3).  
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4.3 Conclusions 
 

From the spectral plots above, it can be seen that the spectral plot of left hand imagery shows 

an increase in the P4, F3 and Fp2 electrodes and a decrease in power in the area of the Cz, FC1 and FC2 

electrodes at 26 Hz. During the right-hand MI task, the spectral power increases in the P4, PO4 and Fp2 

electrodes. For the left leg MI, there is an increase in power in the PO4, F3 and 2 electrodes and a 

decrease in the area of Cz, Fz, FC1 and FC2 electrodes, at 26 Hz. On the contrary, for the right leg, there 

is an increase in the PO4, F3 and PO7 electrodes, with a decrease in power near the P4 electrode. In 

terms of legs movement, for the left leg, there is an increase in power in the F3, PO4 and electrodes and 

for the right leg, the increase is verified at the F3 and Fp2 electrodes.  
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5. Motor imagery and simple movements - EEG feature extraction and 

classification 
 

 

5.1 Experimental design 
 

5.1.1 Experimental Setup 

 

EEG data was recorded from six healthy participants (3 males and 3 females, 25.5 ± 6.7453 

years). None of the participants had previous motor imagery experience. It were used two g.tec Nautilus, 

EEG wireless acquisition systems with active-electrodes: a 16-channels dry electrodes cap (g.Sahara) 

and a 32-channels wet electrodes cap (g.ladybird), with a sampling frequency of 250 Hz. The EEG 

systems were placed accordingly to the 10-20 system. The study comprised three different experiments: 

 

i) A two-class MI task that involved imaginary movements of the left and right arms; 

ii) A two-class MI task that involved imaginary movements of the left and right legs; 

iii) A task with actual movements of the left and right leg while the subject was sited. 

 

To collect the data for offline classification it was followed a Graz-BCI stimulus paradigm 

[142]. The cues were displayed with Psychtoolbox-3 (Matlab R2017b), the EEG acquisition was made 

with OpenVibe 1.3 and the EEG analysis was performed with Matlab R2017b (The Mathworks, Natick, 

MA) [143] [144] [145] [94]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Visual Stimulus Presentation. The screen displays a green cross with a red arrow, pointing to the left or right. The 
direction of the arrow indicates if the subject should imagine/move the right or left limb.  

Figure 5.2. Visual stimulus timing diagram. A sound is emitted before the cue. After the cue, subjects should perform the 

motor imagery /movement for approximately four seconds. Motor imagery / movement is followed by a blank screen.    
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5.1.2 Channels Locations 

 

Firstly, the testing accuracy was calculated considering all the channels, in both systems. Then, 

specific channels were selected based on their locations with respect to the motor cortex. For the dry 

cap, the testing accuracy was calculated selecting just a specific group of electrodes in the area of the 

motor cortex: F3, Fz, F4, T7, C3, C4, T8, P3, Pz and P4 (configuration 1). For the wet system, the testing 

accuracy was also calculated considering the same electrode configuration as the dry cap and a different 

configuration according to [146], where it was selected the channels F3, F4, FC5, FC6, C3 and C4 

(configuration 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 
 

 

Figure 5.3. EEG electrode placement for the 16 channels g.Nautilus system used during the experiment based on the 

International 10-20 system. The channels selected are represented in blue. 

Figure 5.4. Left: EEG electrode placement for the 32 channels g.Nautilus system used during the experiment based on the 
International 10-20 system (configuration 1). Right: EEG electrode placement for the 32 channels g.Nautilus system used 
during the experiment based on the International 10-20 system (configuration 2). The channels selected are represented in blue. 
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5.2 Analysis 
 

5.2.1 Feature extraction and classification  

 

EEG feature extraction is investigated based on right versus left motor imagery of the hands and 

legs and simple movements of the legs (two classes classification).   

Initially, the EEG signal was filtered based on a bandpass Butterwoth filter (order 4) at 1-30 Hz, 

and, subsequently, it was used ICA to remove the influence of non-brain components (artefact removal).  

Later, the signal was also temporally filtered in the β band (12-30 Hz), since this frequency range has 

shown to improve the classification accuracy, according to [147]. 

Feature extraction and classification were performed in Matlab, using scripts based on eeglab 

[139]. For the feature extraction, it was selected 0.4 seconds of the signal, half a second after the cue. 

Features were extracted based on a Common Spatial Pattern filter, which increases the signal variance 

for one condition while minimizing the variance for the other condition.  For comparison terms, features 

were also extracted based on a Regularized Common Spatial Pattern filter.  

 

5.2.1.1 Feature Extraction based on Common Spatial Patterns 

 

To extract classification features from the EEG data, it was used the Common Spatial Pattern 

algorithm, which extracts spatial filters that maximize the discriminability between two classes. The 

CSP training was performed with the function learnCSP.m, developed by Lotte et al [81]. 

 

5.2.1.2 Regularised Common Spatial Patterns (RCSP) 

 

As mentioned before, although the CSP filters are an efficient way of extracting spatial filters 

that discriminate two classes, they are sensitive to noise and outliers. To minimize the influence of these 

outliers in extracting features based on the CSP algorithm it was used the regularization, particularly, 

with the Ledoit and Wolf’s method [86], which regularizes the covariance matrix by shrinking it to 

identity. Here, the CSP training was performed with the function learn_DL_CSPLagrangian_auto.m, 

also developed by Lotte et al in the RCSP toolbox [81]. This function learns the regularized CSP filters 

based on diagonal loading, to discriminate between two mental states in EEG signals. 

 

5.2.1.3 Classification 

 

For the classification process, two algorithms were tested, namely, SVM based on radial basis 

function and linear discriminant analysis (LDA). SVM and LDA algorithms were implemented with the 

Matlab proper functions, fitcsvm.m and fitcdiscr.m, respectively.  
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5.3 Results  
 

The classification results for the right versus left MI and simple movements tasks for both dry 

and wet systems, are shown in tables 5.1 and 5.3 and illustrated in figures 5.5 and 5.7. The 10-fold cross-

validation generalization loss of the classifications results, are shown in tables 5.2 and 5.4 and illustrated 

in figures 5.6 and 5.8. 

 

 

 

 

Table 5.1. Average testing accuracy of the classifications results of left versus right (L/R) MI of the hands and legs and simple 

movements of the legs, based on the dry system. The results are shown using the SVM and LDA algorithms, with CSP and 
RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by *.     
 

  

  

Testing Accuracy (%) 

MI hands MI legs Movement 

SVM (CSP) 85.78 ± 8.44 86.50 ± 4.92 84.26 ± 7.30 

LDA (CSP) 83.66 ± 7.78 85.50 ± 3.15 82.78 ± 8.62 

SVM (RCSP) 86.74 ± 6.77 85.33 ± 5.39 83.86 ± 4.52 

LDA (RCSP) 85.43 ± 7.30 84.11 ± 4.48 83.10 ± 5.51 

SVM (RCSP)* 86.26 ± 7.38 84.95 ± 5.84 83.78 ± 3.90 

SVM (RCSP) β 97.84 ± 1.18 96.47 ± 2.23 91.73 ± 4.26 

SVM (RCSP) β* 96.84 ± 1.61 97.73 ± 2.12 91.88 ± 3.55 

 

 

 

 

 

 

Table 5.2. 10-fold cross-validation generalization loss of the classifications results for the right versus left MI of the hands and 
legs and simple movements of the legs, based on the dry system. The results are shown using the SVM and LDA algorithms, 
with CSP and RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by *.     
  

Generalisation Loss 

MI hands MI legs Movement 

SVM (CSP) 0.13 ± 0.07 0.13 ± 0.04 0.15 ± 0.06 

LDA (CSP) 0.15 ± 0.08 0.15 ± 0.06 0.16 ± 0.06 

SVM (RCSP) 0.13 ± 0.08 0.14 ± 0.06 0.16 ± 0.04 

LDA (RCSP) 0.14 ± 0.07 0.16 ± 0.06 0.16 ± 0.03 

SVM (RCSP) * 0.13 ± 0.07 0.14 ± 0.06 0.16 ± 0.05 

SVM (RCSP) β 0.02 ± 0.01 0.02 ± 0.01 0.05 ± 0.02 

SVM (RCSP) β* 0.01 ± 0.00 0.02 ± 0.01 0.05 ± 0.02 
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Figure 5.5. Average testing accuracy of the classifications results of left versus right (L/R) MI of the hands and legs and simple 
movements of the legs, based on the dry system. The results are shown using the SVM and LDA algorithms, with CSP and 
RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by *.     
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Figure 5.6. 10-fold cross-validation generalization loss of the classifications results for the right versus left MI of the hands 
and legs and simple movements of the legs, based on the dry system. The results are shown using the SVM and LDA algorithms, 
with CSP and RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by *.     
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Table 5.3. Average testing accuracy of the classifications results of left versus right (L/R) MI of the hands and legs and simple 

movements of the legs, based on the wet system. The results are shown using the SVM and LDA algorithms, with CSP and 
RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by * and the configuration 
2 is represented by **.    
 

  

  

Testing Accuracy (%) 

MI hands MI legs Movement 

SVM (CSP) 95.24 ± 2.31 93.21 ± 6.08 98.02 ± 1.43 

LDA (CSP) 95.11 ± 3.67 95.47 ± 3.42 97.93 ± 0.82 

SVM (RCSP) 94.48 ± 5.61 93.83 ± 5.20 97.71 ± 2.78 

LDA (RCSP) 91.97 ± 7.90 94.16 ± 3.02 97.87 ± 1.62 

SVM (RCSP)* 94.29 ± 6.54 94.02 ± 6.00 98.18 ± 2.57 

SVM (RCSP)** 93.36 ± 7.62 95.54 ± 4.49 97.63 ± 3.12 

SVM (RCSP)* (β) 98.49 ± 0.51 99.90 ± 0.14 100.00 ± 0.00 

SVM (RCSP)** (β) 98.49 ± 0.57 99.72 ± 0.40 99.82 ± 0.01 

  

 

 

 

Table 5.4. 10-fold cross-validation generalization loss of the classifications results for the right versus left MI of the hands and 
legs and simple movements of the legs, based on the wet system. The results are shown using the SVM and LDA algorithms, 
with CSP and RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by * and 
the configuration 2 is represented by **. 
      

Generalisation Loss 

MI hands MI legs Movement 

SVM (CSP) 0.05 ± 0.04 0.06 ± 0.05 0.01 ± 0.02 

LDA (CSP) 0.03 ± 0.02 0.05 ± 0.04 0.02 ± 0.01 

SVM (RCSP) 0.07 ± 0.07 0.04 ± 0.03 0.02 ± 0.02 

LDA (RCSP) 0.08 ± 0.06 0.05 ± 0.05 0.02 ± 0.02 

SVM (RCSP) * 0.07 ± 0.07 0.05 ± 0.04 0.02 ± 0.03 

SVM (RCSP) ** 0.06 ± 0.06 0.06 ± 0.05 0.02 ± 0.03 

SVM (RCSP)* (β) 0.01 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 

SVM (RCSP)** (β) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 
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Figure 5.7. Average testing accuracy of the classifications results of left versus right (L/R) MI of the hands and legs and simple 

movements of the legs, based on the wet system. The results are shown using the SVM and LDA algorithms, with CSP and 
RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by * and the configuration 
2 is represented by **.    
 

Figure 5.8. 10-fold cross-validation generalization loss of the classifications results for the right versus left MI of the hands 

and legs and simple movements of the legs, based on the wet system. The results are shown using the SVM and LDA algorithms, 
with CSP and RCSP approaches for feature extraction. The configuration 1 for electrodes placement is represented by * and 
the configuration 2 is represented by **. 
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Regarding the dry electrodes system, the highest classification accuracy (97.84 ± 1.18 %) was 

verified for the MI of the hands with the SVM classifier and the RCSP approach, considering all the 

channels and a temporal filter in the β band.  On the other hand, considering the wet electrodes system, 

the best classification (100.00 ± 0.00 %) was obtained during simple movements of the legs, using the 

SVM classifier with the RCSP approach, based on configuration 1 for electrodes positioning and a β 

band temporal filter.   

Figure 5.9-5.12 illustrate the analysis of the most significant RCSP components during MI and 

simple movements tasks. Classification was performed with the SVM classifier. The average across 

subjects is calculated, as more RCSP components are chosen, from the most significant to less 

significant eigen values. Figure 5.9 and 5.11 illustrate the testing accuracy, for the dry and wet systems, 

respectively. Figures 5.10 and 5.12, show the 10-fold cross-validation, generalisation loss.  
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Figure 5.9. Average testing accuracy across subjects as more RCSP components are chosen from the most significant to less 
significant eigenvalues, based on the dry electrodes system. 

Figure 5.10. Generalisation loss for different numbers of RCSP components, from the most significant to less significant 
eigenvalues, based on the dry electrodes system.  
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According to the number of components selected, for the wet system, the error drops 

significantly for the first five components, but it drops at a slower rate as the number of components 

increase. As expected, the error is minimum when all the components are incorporated in the analysis. 

The classification increases abruptly for the first five components and continues to grow as more 

components are incorporated. 

For the dry system, the error drops with a slower rate, when more components are incorporated, 

when compared to the wet system. For the MI and movements of the legs the error increases when 12 

components are used. The classification also increases when more components are incorporated 

although it decreases for the MI of the hands when 8 and 12 components are used.  
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Figure 5.11. Average testing accuracy across subjects as more RCSP components are chosen from the most significant to less 
significant eigenvalues, based on the wet electrodes system. 

Figure 5.12. Generalisation loss for different numbers of RCSP components, from the most significant to less significant 
eigenvalues, based on the wet electrodes system. 
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5.4 Discussion 
 

According to the tables and figures above, it is possible to infer that the combination of a beta 

bandpass filter with a RCSP filter has shown the best classification rate. These results show that a careful 

selection of electrode location is more important than having a dense map of electrodes. Moreover, dry 

systems are more sensitive to interference and their signal-to-noise quality is low. Nevertheless, with an 

appropriate sensor selection process and feature extraction, their classification performance can 

increase. In order to make EEG systems user-friendly and more reliable, future work should focus on 

how to dynamically select the optimum EEG sensor configuration. 
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6. Detection of intention to adapt the gait 
 

6.1 Experimental Setup 
 

EEG data was recorded from six healthy participants, two females and four males (27.5 ± 7.58 

years), with a 32-channels EEG wireless acquisition system (g.tec Nautilus g.ladybird) with active-

electrodes (Ag/AgCl).  This system records the EEG data with a sampling frequency of 250 Hz, and 

acceleration data in three axes (𝑥, 𝑦, 𝑧). 

The EEG cap was placed accordingly to the 10-20 system (figure 6.1), ensuring that each 

channel had less than 30 Ω of impedance for all participants. EEG data was recorded with OpenVibe 

version 1.3 [94]. 

To conduct this study, participants were asked to walk according to a musical tone that changed 

between three modes, slow walking (0.875 Hz), normal walking (1.750 Hz) and fast walking (2.625 

Hz). Each mode consisted of 20 trials, resulting in 60 adaptations randomly permuted. The overall 

experiment lasted for about 16 minutes. The experimental design is illustrated in figure 6.2.  The 

stimulus (musical tone) was programmed and displayed with Psychtoolbox-3 [143] [144] [145]. The 

adaptation events (changes between musical tones) were send to the EEG acquisition server via TCP/IP 

communication. 

In order to record the participants while they were walking, a Logitech camera has been also 

used, recording the participants at 60 frames per second. To synchronize the camera recording with the 

EEG acquisition, each captured frame raised an event that was send to the EEG acquisition server via 

TCP/IP communication. Video capturing and events’ transmission was also implemented with 

Psychtoolbox-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Channels locations according to the 10-20 EEG system. 

Figure 6.2. Experimental design. Participants walk freely according to a musical tone that switches randomly between three 
modes (slow, normal and fast). 
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6.2 Analysis 
 

6.2.1 Gait Features Extraction 

 

To extract gait features from the data, the first step is to epoch the EEG signal into segments 

according to left/right heel strikes. In order to discriminate between left and right heel strikes, it was 

used both the camera recordings and the acceleration data of the EEG system.  

 

6.2.1.1 Gait Features Extraction based on a single camera 

 

Camera recordings were processed with OpenPose, a real-time approach that uses deep neural 

networks to track the joints of multiple-persons. The output consists in a 2D skeleton, with the 

coordinates of human joints, as shown in figure 6.3 [148] [149] [150]. To extract the gait events of right 

and left heel strikes, the Euclidean distance between the left and right ankle coordinates was estimated, 

assuming that the camera was in a vertical position. Considering, left and right ankle coordinates, each 

foot contact is represented by a peak. 

To denoise the signal and to improve the detection of the peaks, singular spectrum analysis 

(SSA) was applied. After the SSA, a peak detection method (Appendix B) was used to detect heel strikes. 

In this method, a point is considered a maximum peak if it has the maximal value and was preceded (to 

the left) by a value lower than delta (δ = 0.1). 

 

6.2.1.2 Gait Features Extraction based on acceleration data  

 

The acceleration data was processed with Principal Component Analysis (PCA) to derive the 

dominant signal variation, due to gait. Here, the first components were used to reconstruct the 

observations. Singular spectrum analysis and peak detection (δ = 0.05) were also applied to detect heel 

strikes.  Both PCA was SSA were performed with Matlab functions, pca.m and ssa.m, respectively.  

The main goal of the acceleration data is to ensure that the EEG signal and the video timeline 

are completely synchronized. 

Figure 6.4 illustrates the peak detection method, both on video poses and acceleration, where 

each peak corresponds to a heel strike. It is also possible to visualize the markers representing each 

musical tone (slow, normal and fast).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. (Left) OpenPose output. (Right) OpenPose 2D keypoint detection. 
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6.2.1.3 Singular spectrum analysis 

  
As previously said, SSA was used to denoise the signal and improve the peak detection, both 

on video and acceleration data.  This technique is based on time series analysis that incorporate 

multivariate statistics, multivariate geometry, dynamical systems and signal processing. This technique 

can be applied to a time series data in order to decompose it into a number of orthogonal components, 

such as slowly varying trend, oscillatory components and a noise.  The SSA algorithm comprises two 

different stages: decomposition and reconstruction [151].  

Decomposition is subdivided in embedding and singular value decomposition. During 

embedding, a one-dimensional time series 𝑠 of length 𝑛 is transferred into a multidimensional matrix 

(𝑙 × 𝑘), called trajectory matrix: 

𝑋 = [𝑥𝑖𝑗] = [𝑥1, 𝑥2, … , 𝑥𝑘] (6.1) 

Where 𝑘 = 𝑛 − 𝑙 + 1 and 𝑙 is the window length or embedding dimension. Singular value 

decomposition, calculates the singular value decomposition of the trajectory matrix, representing it as a 

sum of rank-one bi-orthogonal elementary matrices. Considering 𝑆 = 𝑋𝑋𝑇  and assuming that 

𝜆1, 𝜆2, … , 𝜆𝑙 are eigenvalues of 𝑆, the corresponding eigenvectors are 𝑢1,𝑢2,…𝑢𝑙. If 𝑣𝑖 = 𝑋𝑇𝑢𝑖/√𝜆𝑖, it 

is possible to write the trajectory matrix as: 

𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑑 (6.2) 

Where 𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖{𝜆𝑖 > 0} and 𝑋𝑖 = √𝜆𝑖  𝑢𝑖𝑣𝑖
𝑇 . Each principle component is given by the 

projection of the time series into the direction of each eigenvector  

Therefore, reconstruction is subdivided in grouping and diagonal averaging. The grouping step, 

splits the elementary matrices Xi into several groups and sums the matrices within each group. The 

elementary matrices of each group are represented by: 

𝑋𝐼𝑗 =  𝑋𝑖𝑗1 + ⋯ + 𝑋𝑖𝑗𝑝 (6.3) 

Where 𝐼𝑗 = 𝑖𝑗1, … , 𝑖𝑗𝑝 represents the indices for each group. The original matrix can be written 

as the sum of all the resulted matrices 𝑋𝐼𝑗 : 

𝑋 =  𝑋𝐼1 + ⋯ + 𝑋𝐼𝑚 (6.4) 

The last step of the SSA algorithm (diagonal averaging) transforms the final elementary matrix 

into a time-series of length 𝑛. The elements of the resultant time series are computed using the average 

of the matrix elements over the diagonal elements. 

Figure 6.4. Gait feature extraction: The video-based gait signal and the acceleration-based gait signal are plotted in blue and 
green lines, respectively after SSA processing. The extrema points represent left and right heal strikes, respectively. Adaptation 
events are represented as vertical lines in green, red and blue colours that represent, normal, fast and slow speed, respectively. 
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6.2.1.4 Principal Component Analysis 

  

PCA is a statistical technique that analyses data representing observations described by several 

dependent variables. In this study, PCA was used to derive the dominant signal variation (gait). The 

main goal of PCA is to extract the significant information from the data and express this information as 

a set of new orthogonal and uncorrelated variables, called principal components.  

Mathematically, PCA transforms the data to a new coordinate system such that the greatest 

variance by some projection of the data comes to lie on the first coordinate (first principal component).   

The first principal component is the linear combination of 𝑛-variables that has maximum 

variance, among all linear combinations, explaining as much of the variability in the data as possible 

[152].  

 

6.2.2 Movement Artefact Removal 

 
It is known that EEG-data acquisition is very sensitive to motion artefacts. As shown in chapter 

three, in order to eliminate the influence of motion, the EEG signal was filtered based on a bandpass 

impulse response filter of 3-45 Hz (figure 3.2). Subsequently, ICA was used to remove the influence of 

motion components [140]. Artefactual components were removed, and the EEG signal were 

reconstructed without their interference, like is shown in chapter 3, figures 3.8-3.10. In this study, an 

average of 24.17 ± 3.55 independent components were left after ICA decomposition. 

 

6.2.3 EEG Feature Extraction 

 

 This study focuses on two classification problems: right versus left gait cycle classification and 

adaptation versus non-adaptation steps (two classes classification).  

According to the adaptation versus non-adaptation steps classification, EEG feature extraction 

is formulated by a classification problem of whether a step is an adaptation step or not. Adaptation steps 

are based on the reaction time (RT) between the change of the rhythmic tone and the step to match the 

average step of the session. On the other hand, non-adaptation steps are chosen from the middle of the 

trial to match the number of the adaptation steps.  

 

6.2.3.1 Feature Extraction based on Common Spatial Patterns 

 

 Similarly, to the previous chapter, to extract classification features from the EEG data, it was 

used the Common Spatial Pattern algorithm. The CSP training was performed with the function 

learnCSP.m, developed by Lotte et al [81]. 

 

6.2.3.2 Feature Extraction based on Regularised Common Spatial Patterns (RCSP) 

 

To minimize the influence of  outliers in extracting features based on the CSP algorithm it was 

used the regularization, particularly, with the Ledoit and Wolf’s method [86]. The CSP training was 

performed with the function learn_DL_CSPLagrangian_auto.m, also developed by Lotte et al.  

 

6.2.4 Classification 

 

Like the previous chapter, for the classification process, it was used both SVM based on radial 

basis function and LDA. SVM and LDA algorithms were implemented with the Matlab proper 

functions, fitcsvm.m and fitcdiscr.m, respectively.  
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6.3 Results  
 

As previously mentioned, the investigation of gait and gait adaptation is based on two EEG 

classification experiments: Right vs left gait cycle classification and adaptation vs non-adaptation steps. 

For each adaptation type, it was estimated the step duration, the adaptation time and the number of 

adaptation steps, also called, reaction time. Reaction time is estimated as the time between the change 

of the rhythmic tone and the time when the step matches the average step of the session within the 

standard deviation limit. Table 6.1 summarises the behavioural analysis for each adaptation type.   

 

Table 6.1. Behavioural analysis of adaptation. Steps statistics (step duration, adaptation time and number of adaptation steps) 
according to the music tone frequency (slow, normal or fast). 
 

Adaptation 

Time 

Steps Statistics 

Step duration 

(secs) 

Adaptation time 

(secs) 

Number of 

adaptation Steps 

Slow 0.57 ± 0.13 1.29 ± 0.62 2.24 ± 0.96 

Normal 0.56 ± 0.01 2.01 ± 0.26 3.53 ± 0.46 

Fast 0.45 ± 0.02 1.47 ± 0.33 3.26 ± 0.79 

 

According to table 6.1, the adaptation time was the lowest (1.29 ± 0.62 seconds) when 

participants tried to adapt their walking to the slowest musical tone, resulting in the smallest number of 

adaptation steps (2.24 ± 0.96 steps). On the other hand, the highest adaptation time (2.01 ± 0.26 seconds) 

was verified when participants adapted their walking to the normal musical tone, and, subsequently, the 

number of adaptation steps was the highest (3.53 ± 0.46 steps). As expected, in terms of steps duration, 

the highest mean value was verified for the slow musical tone and the lowest value for the fastest tone.  

The classification results for the right versus left gait cycles and for the adaptation versus non-

adaptation, steps are summarized in table 6.2 and illustrated in figure 6.5. Figure 6.5 demonstrates the 

testing accuracy of the classifications results of left versus right (L/R) steps and adaptation versus non-

adaptation (A/NA) steps, based on CSP and RCSP feature extraction. The results are shown across 

different sizes of sliding window (w) with a range from 90 samples to 60 samples, where 90 samples 

correspond to 0.36 seconds, whereas the event duration is taken to be 0.4 seconds. 

 

 
Table 6.2. Classification results for the right versus left gait cycles and for the adaptation versus non-adaptation steps, based 
on CSP and RCSP. The results are shown across different sizes of sliding window (w) with a range from 90 to 60 samples. 

 

 

 

   Testing Accuracy (%) 

L/R (CSP) L/R (RCSP) A/NA (CSP) A/NA (RCSP) 

SVM (w=90) 63.71 ± 6.86 78.57 ± 6.45 86.32 ± 7.43 90.26 ± 5.39 

SVM (w=80) 63.54 ± 6.53 76.43 ± 5.77 85.51 ± 6.08 90.13 ± 2.83 

SVM (w=70) 63.41 ± 6.24 76.24 ± 5.38 84.30 ± 5.15 88.90 ± 3.60 

SVM (w=60) 62.96 ± 5.40 74.53 ± 5.76 82.47 ± 4.90 87.17 ± 4.63 

LDA (w=90) 60.29 ± 2.49 61.41 ± 2.44 73.75 ± 2.57 74.13 ± 3.75 
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According to table 6.2 and figure 6.5, in terms of adaptation versus non-adaptation, the highest 

classification (90.26 ± 5.39 %) was obtained when using the SVM method with a sliding window of 90 

samples, based on RCSP algorithm. Regarding the right-left steps classification, the highest 

classification was also obtained with the same method, although the accuracy is significantly lower 

(78.57 ± 6.45 %). 

The 10-fold cross-validation generalization loss of the classifications results for the right versus 

left gait cycles and for the adaptation versus non-adaptation steps are summarized in table 6.3 and 

illustrated in figure 6.6. Figure 6.6 demonstrates the generalization loss of the classifications results of 

left versus right (L/R) steps and adaptation versus non-adaptation (A/NA) steps, based on CSP and 

RCSP feature extraction. The results are shown across different sizes of sliding window (w) with a range 

from 90 samples to 60 samples, where 90 samples correspond to 0.36 seconds, whereas the event 

duration is taken to be 0.4 seconds 

 

 
Table 6.3. 10-fold cross-validation generalization loss of the classifications results for the right versus left gait cycles and for 
the adaptation versus non-adaptation steps, based on CSP and RCSP. The results are shown across different sizes of sliding 

window (w) with a range from 90 to 60 samples. 
 
 
. 

 

 

 

 

 

 
 

  
Generalisation Loss 

L/R (CSP) L/R (RCSP) A/NA (CSP) A/NA (RCSP) 

SVM (w=90) 0.19 ± 0.10 0.14 ± 0.03 0.09 ± 0.04 0.06 ± 0.04 

SVM (w=80) 0.24 ± 0.04 0.17 ± 0.03 0.10 ± 0.04 0.06 ± 0.02 

SVM (w=70) 0.26 ± 0.02 0.17 ± 0.03 0.11 ± 0.04 0.07 ± 0.02 

SVM (w=60) 0.25 ± 0.04 0.19 ± 0.03 0.12 ± 0.03 0.09 ± 0.03 

LDA (w=90) 0.40 ± 0.03 0.38 ± 0.02 0.39 ± 0.06 0.25 ± 0.04 

Figure 6.5. Average testing accuracy of the classifications results of left versus right (L/R) steps and adaptation versus non-
adaptation (A/NA) steps, based on CSP and RCSP feature extraction. The results are shown across different sizes of sliding 
window (w) with a range from 90 to 60 samples 
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Considering table 6.3 and figure 6.6, the lowest generalisation loss, in terms of adaptation versus 

non-adaptation, was obtained when using the SVM method with a sliding window of 90 and 80 samples, 

based on RCSP algorithm (0.06 ± 0.04 and 0.06 ± 0.02). Regarding the right-left steps classification, 

the lowest generalisation loss was also obtained when using the SVM method with a sliding window of 

90, also based on the RCSP algorithm (0.14 ± 0.03). 

Figure 6.7 - 6.10 evaluate the influence of the number of components to the classification 

accuracy, in terms of adaptation/non-adaptation and right/left steps. Figure 6.7 shows the average across 

subjects, 10-fold cross-validation, generalisation loss more CSP components are chosen from the most 

significant to less significant eigenvalues. Figure 6.8 shows the average testing accuracy across subjects 

as more CSP components are chosen from the most significant to less significant eigenvalues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Generalisation loss for different numbers of CSP components, from the most significant to less significant 
eigenvalues. 

Figure 6.6. 10-fold cross-validation generalization loss of the classifications results of left versus right (L/R) steps and 
adaptation versus non-adaptation (A/NA) steps, based on CSP and RCSP feature extraction. The results are shown across 
different sizes of sliding window (w) with a range from 90 to 60 samples. 
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Evaluating figure 6.7, it is possible to note that that for both type classifications, the error drops 

significantly for the first five components but it remains the same or even increases when more 

components are incorporated. According to figure 6.8, it is possible to infer that 5 out of 32 components 

are enough to achieve high accuracy, although the accuracy increases with the number of components 

incorporated.  

Figure 6.9 shows the average across subjects, 10-fold cross-validation, generalisation loss as 

more RCSP components are chosen from the most significant to less significant eigenvalues. We note 

that for both type of two-class classification the error drops significantly for the first five components, 

but it remains the same or even increases when more components are incorporated. Figure 6.10 shows 

the average testing accuracy across subjects as more RCSP components are chosen from the most 

significant to less significant eigenvalues. 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 

Figure 6.8. Average testing accuracy across subjects as more CSP components are chosen from the most significant to less 
significant eigenvalues. 

Figure 6.9. Generalisation loss for different numbers of RCSP components, from the most significant to less significant 
eigenvalues. 
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Evaluating figure 6.9 and 6.10 it is possible to verify the same similar behaviour as with the 

CSP method, for both the testing accuracy and generalisation loss, when the number of components 

incorporated varies.  

Finally, figure 6.11 shows the spatial distribution of the five more significant RCSP components 

for one of the subjects. The top row shows the RCSP filters associated with adaptation/non-adaptation 

classification, whereas the bottom row shows the RCSP filters associated with right/left classification.  

 

  

 

To compare the methods used (LDA and SVM with different values of sliding windows) based 

on CSP and RCSP, it was performed a paired t-test.  

 

 

 

Figure 6.11. RCSP filters for the five most significant components of one of the subjects. Top row shows the RCSP filters 
associated with adaptation/non-adaptation classification. Bottom row shows the RCSP filters associated with right/left 
classification. 
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Figure 6.10. Average testing accuracy across subjects as more RCSP components are chosen from the most significant to less 

significant eigenvalues. 
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Table 6.4. Paired t-test to compare the methods used (LDA and SVM with different values of sliding windows) based on 

CSP and RCSP. 

 

 

 

 

 

 

 

 

 

Considering the previous table, it is possible to verify that the p-value is lower than 0.05 in all 

cases, which means that it is possible to assume that a significant difference exists, between both 

methods (CSP and RCSP). 

 

 

6.4 Discussion 
 

According to the previous results, there is a significant improvement in the classification 

accuracy and generalisation loss, based on the RCSP filters for all types of classification. It is also noted 

that, for both experiments (left/right and adaptation/non-adaptation), that five out of 32 components are 

enough to achieve a high accuracy. Furthermore, the spatial distribution of the RCSP components seems 

to be of physiological origin. 

  

  
Paired t-test  

A / NA L/R  

SVM (w=90) CSP /  SVM (w=90) RCSP 0.0489 0.0004 

SVM (w=80) CSP /  SVM (w=80) RCSP 0.0071 0.0001 

SVM (w=70) CSP /  SVM (w=70) RCSP 0.0056 0.0001 

SVM (w=60) CSP /  SVM (w=60) RCSP 0.0072 0.0001 

LDA (w=90) CSP /  LDA (w=90) RCSP 0.0010 0.0454 
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7. Conclusions 
 

In order to develop robust brain computer interface environments for neuro-rehabilitation of 

patients and robotic prosthesis control, motor imagery is an important technique. Several studies showed 

that MI activates partially the same brain regions as the performance of the real task and it can increase 

motor performance and, therefore, it is widely used in rehabilitation. To bring this technology to 

everyday use, relatively new EEG acquisition systems have been developed. These systems are highly 

portable, wireless and they are based on dry and active electrodes, which does not require the use of 

conductive gel. As a result, they are more prone to interference and their signal-to-noise ratio may be 

low. In chapter five, the classification performance of a dry 16-channel and a wet, 32-channel, wireless 

EEG system is compared based on a number of MI tasks along with actual movements of the limbs. 

According to the results, it is possible to conclude that the combination of a beta bandpass filter with a 

RCSP filter and the SVM classifier has shown the best classification rate (97.84 ± 1.18 % for the dry 

electrodes and 100.00 ± 0.00 % for the wet electrodes). These results show the feasibility of home use 

of dry electrode systems with a small number of sensors, making EEG systems user-friendly and more 

reliable.  

Gait is an important activity of daily life, which requires the activation of the nervous and 

musculoskeletal systems and has an important role in the quality of life and independence of people. 

Gait adaptation plays a significant role in the ability of humans to walk and maintain their balance. In 

the elderly and people with neurological problems, it is an index of their health progression.  

Consequently, assistive robotic devices should consider this adaptation and be able to sense and adjust 

to gait changes. This requires the decoding of neural signals while people walk, especially in their natural 

environments.  

Contrary to the adaptation studies today, which are based on specialized equipment, chapter six  

focusses on gait adaptation in natural settings. The subjects walk in a room following a tone that changes 

between three modes of slow, normal and fast pace, randomly.  EEG signal is recorded wirelessly, and 

gait characteristics are extracted based on a single RGB camera. The EEG signal is pre-processed based 

on a bandpass filter, followed by ICA to identify and remove motion-related artefacts. Later, the 

extracted gait characteristics are used to epoch the EEG signal and to formulate two classification 

problems of intention detection in gait adaptation: i) right versus left step and ii) adaptation steps versus 

non-adaptation steps. Subsequently, CSP and RCSP are used to extract EEG features that maximize the 

discriminability between two classes. Finally, this study shows the influence of the number of 

components to the classification accuracy and their spatial distribution. Accordingly, to the results, 

participants showed the lowest adaptation time when participants adapted their walking to the normal 

musical tone. The classification results showed that there is a significant improvement in the 

classification accuracy and generalisation loss when a RCSP filter is used, both for left/right and 

adaptation/non-adaptation classification. Additionally, it was showed that that five out of 32 components 

are enough to achieve a high accuracy. Furthermore, the spatial distribution of the RCSP components 

seems to be of physiological origin. 

In terms of challenges and limitations, there are several challenges associated with the 

detection of motor intention in imagery movement tasks of the legs and hands. The number and 

placement of EEG electrodes plays a critical role. The use of fewer channels helps to decrease the 

computational complexity and develop methods that allow real-time feedback to the user. The type of 

EEG electrodes is also quite important, since electrodes can be either wet or dry. Wet electrodes require 

the application of conductive gel, which improves the signal quality. However, they require long 

preparation times and impede the use of the technology at everyday scenarios. Dry electrodes may 

overcome this problem, reducing montage times and subject discomfort but the signal quality is poorer. 
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Another limitation of the present study, it the fact that the BCI presented is not a closed-loop BCI, which 

means that the user does not receive real-time feedback of the neural activity. 

Artefact removal is the main challenge in intention detection, since the EEG data is highly 

corrupted with noise, especially when the subjects are performing motor actions. Although the literature 

in artefact removal is very extensive, researches haven’t agreed in an optimal method to clean the EEG 

signal. In the past few years, artefact removal during walking and running has also been studied, but 

there is still not an accepted method to denoise the signal, which is highly contaminated due to the motor 

actions. Most of the methods developed for artefact removal during walking are based on channel-based 

templates, which may remove neurophysiological data. 

Even though there is not a standard solution for the removal of EEG artefacts, and especially 

motion artefacts, ICA is one of the most used techniques to remove gait-related movement artefacts. 

Chapter three shows that ICA seems to be useful to remove artefacts from the EEG data, both in the 

motor imagery and gait adaptation studies. This technique is used mainly to remove the influence of 

motion and gait-related components, suggesting that motion artefacts can be minimized using ICA and 

filtering techniques, for posterior use with BCI analysis. 

Since artefact detection and removal is an ongoing problem and there is not a standard and 

accepted solution, future work should focus in a more efficient removal of motion artefacts. 

Additionally, the system can also be designed as an open-loop BCI, in order to provide real-time 

feedback, allowing the user to verify if the system has the desired output and making it easier to use in 

real life environments.   
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9. Appendix 
 

A. Preprocessing for BCI 
 

% --------------------------------------------------------------------------------- 

%                           Preprocessing for BCI  

%---------------------------------------------------------------------------------- 

 

close all; clear all; clc; 

 

eeglabDir = 'C:\SOFTWARE\software\eeglab_current\eeglab14_1_1b'; 

mainEEGdir = 'C:\DATA\Adaptation Data\Subject 1'; 

capInfo = '\\icnas3.cc.ic.ac.uk\id1016\downloads\Standard-10-20-Cap81.ced'; 

eegfile = 'sub1-eeg.csv'; 

[~,namef,ext] = fileparts(eegfile); 

setname = strcat(namef,'_eeglab'); 

filtered_file = strcat(namef,'_eeglab','_ica'); 

 

eegData = readtable( fullfile(mainEEGdir,eegfile ), 'Delimiter', ';', 

'ReadVariableNames',true ); 

data = table2array(eegData)'; 

time = data(1,:); 

restCh = data(34:end,:); 

data = data(2:33,:); 

 

%Initialize eeglab and load the data 

currentPath = pwd; 

cd(eeglabDir); 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 

cd(currentPath); 

 

% Load the dataset 

EEG = pop_importdata('data', data,'srate', 250); 

 

% Save dataset 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET, 'setname', setname, 

'savenew',setname); 

 

% Store the dataset into EEGLAB 

[ALLEEG EEG CURRENTSET] = eeg_store(ALLEEG, EEG); 

 

eeglab redraw; 

 

% Import channel locations 

EEG.chanlocs = readlocs(capInfo); 

pop_eegplot(EEG, 1, 1, 1); 

 

% EEG filtering 

EEG = pop_eegfiltnew(EEG, 1,30); 

 

% ICA 

EEG = pop_runica(EEG, 'extended',1,'interupt','on'); 

 

% Scalp maps 

pop_topoplot(EEG,0, 1:32); 

pop_selectcomps(EEG, 1:32); 

 

% Components to remove 

EEG = pop_subcomp(EEG); 

 

% Save new dataset 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET, 'setname', 

filtered_file,'savenew',filtered_file); 

 

[ALLEEG EEG CURRENTSET] = eeg_store(ALLEEG, EEG); 

 

varNames = eegData.Properties.VariableNames; 

data2save = [time' EEG.data' restCh']; 
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table2save = array2table(data2save); 

tmpnames = table2save.Properties.VariableNames; 

 

for i=1:length(tmpnames) 

    table2save.Properties.VariableNames(tmpnames(i)) = varNames(i); 

end 

 

outputfile = strcat('filtered_file','.txt'); 

export(table2dataset(table2save),'file',outputfile,'delimiter',';'); 
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B. Analysis of EEG signals based on time locked events 

 

%---------------------------------------------------------------------------------- 

%                             Analysis of EEG data 

%---------------------------------------------------------------------------------- 

 

close all; clear all; clc; 

 

eeglabDir = 'C:\Program Files\eeglab_current\eeglab14_1_2b'; 

mainEEGdir = 'C:\Users\Data\Motor Imagery\Wet Cap\Movement\subject 3'; 

capInfo = '\\icnas3.cc.ic.ac.uk\id1016\downloads\Standard-10-20-Cap81.ced'; 

eegfile = 'filtered_file.txt'; 

[~,namef,ext] = fileparts(eegfile); 

setname = 'EEG Analysis'; 

filtered_file = strcat(namef,'_eeglab','_ica'); 

 

eegData = readtable( fullfile(mainEEGdir,eegfile ), 'Delimiter', ';', 

'ReadVariableNames',true ); 

data = table2array(eegData)'; 

time = data(1,:); 

restCh = data(34:end,:); 

data = data(2:33,:); 

 

% Initialize eeglab and load the data 

currentPath = pwd; 

cd(eeglabDir); 

[ALLEEG EEG CURRENTSET ALLCOM] = eeglab; 

cd(currentPath); 

 

% Load the dataset 

EEG = pop_importdata('data', data,'srate', 250); 

 

%Import channels locations 

EEG.chanlocs = readlocs(capInfo); 

 

% Import events 

cd(mainEEGdir); 

[EEG, eventnumbers] = pop_importevent(EEG,'event','stimulations.txt', 'fields',... 

    {'latency', 'type’, 'duration’}, ‘append', 'no', 'timeunit', 1); 

 

pop_eegplot( EEG, 1, 1, 1); 

 

% Save dataset 

[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, CURRENTSET, 'setname', setname, 

'savenew', setname); 

 

% Store the dataset into EEGLAB 

[ALLEEG EEG CURRENTSET ] = eeg_store(ALLEEG, EEG); 

 

eeglab redraw; 

 

pop_saveset(EEG) 

 

% Extract epochs from data 

EEG = pop_epoch( EEG, {'769'}, [0  3], 'newname', 'epochs_left', 'epochinfo', 

'yes'); 

EEG = pop_epoch( EEG, {'770'}, [0  3], 'newname', 'epochs_right', 'epochinfo', 

'yes'); 

 

% Plot channel spectra and maps 

% Change dataset to epochs_left or epochs_right 

figure; 

pop_spectopo(EEG, 1, [0 3000], 'EEG', 'freq', [4 8 14 26], 'freqrange',[2 

30],'electrodes','on'); 
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C. Peak Detection method 

 

function [maxtab, mintab]=peakdet(v, delta, x) 

 

% PEAKDET Detect peaks in a vector 

% [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local maxima and minima ("peaks") 

% in the vector V. 

% Eli Billauer, 3.4.05 (Explicitly not copyrighted). 

 

maxtab = []; 

mintab = []; 

 

v = v(:); 

 

if nargin < 3 

  x = (1:length(v))'; 

else 

  x = x(:); 

  if length(v)~= length(x) 

    error('Input vectors v and x must have same length'); 

  end 

end 

 

if (length(delta(:)))>1 

  error('Input argument DELTA must be a scalar'); 

end 

 

if delta <= 0 

  error('Input argument DELTA must be positive'); 

end 

 

mn = Inf; mx = -Inf; 

mnpos = NaN; mxpos = NaN; 

 

lookformax = 1; 

 

for i=1:length(v) 

  this = v(i); 

  if this > mx, mx = this; mxpos = x(i); end 

  if this < mn, mn = this; mnpos = x(i); end 

 

  if lookformax 

    if this < mx-delta 

      maxtab = [maxtab ; mxpos mx]; 

      mn = this; mnpos = x(i); 

      lookformax = 0; 

    end 

  else 

    if this > mn+delta 

      mintab = [mintab ; mnpos mn]; 

      mx = this; mxpos = x(i); 

      lookformax = 1; 

    end 

  end 

end 

end 


