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Self-paced movement intention recognition from EEG signals during
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Abstract— Currently, one of the challenges in EEG-based
brain-computer interfaces (BCI) for neurorehabilitation is the
recognition of the intention to perform different movements
from same limb. This would allow finer control of neurorehabil-
itation and motor recovery devices by end-users [1]. To address
this issue, we assess the feasibility of recognizing two self-paced
movement intentions of the right upper limb plus a rest state
from EEG signals recorded during robot-assisted rehabilitation
therapy. In addition, the work proposes the use of Multi-CSP
features and deep learning classifiers to recognize movement
intentions of the same limb. The results showed performance
peaked greater at (80%) using a novel classification models
implemented in a multiclass classification scenario. On the basis
of these results, the decoding of the movement intention could
potentially be used to develop more natural and intuitive robot
assisted neurorehabilitation therapies.

I. INTRODUCTION

Electroencephalogram (EEG) based Brain-Computer In-
terfaces (BCI) for neurorehabilitation is a technology that
provides the user with a non-muscular communication chan-
nel to trigger robot-assisted rehabilitation devices. Hence, an
essential component in EEG-based BClIs is the experimental
paradigm or mental task carried out by the user since this
allows to induce recognizable patterns or changes in the
recorded EEG signals. The most common paradigm in BCI is
motor imagery (MI). Here, the user imagines the movement
of different body limbs which is recognized within a bi-class
classification scenario (e.g., left hand MI versus right hand
MI) from features extracted from the recorded EEG signals.
To do so, the user is guided with visual or auditory cues to
initiate and to end the movement imagery (i.e., synchronous
BCI), afterwards the EEG is analyzed and classified to send
a control signal to the external device.

Although EEG-based BCIs with MI paradigm are used in
neurorehabilitation with satisfactory results there are still un-
solved needs in order to promote rehabilitation and recovery
at both the physical and brain cortical levels. For example,
to promote neural reorganization it is necessary that the
robot-assisted rehabilitation robots execute the movements
while the user is also performing the mental task. This
is not the case is a classical BCI with MI because there
is a inherent delay between movement imagination carried
out by the user and the physical output of the robot-
assisted rehabilitation devices. Futhermore, the success of
a neurorehabilitation with a BCI requires a match between
the mental task performed by the user and the movements
performed by the robotic devices. Again, this is not the case
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with the MI paradigm since the user usually imagines body
movements that are easy to recognize but that are not the
same as the movements performed by the robots. Finally,
BCI driven rehabilitation therapies for a single limb, as those
required for survivors affected by unilateral stroke, requires
the recognition of diverse movements of the same limb to
produce different movements in the robot-assisted rehabilita-
tion devices. This is however a challenging task when using
EEG signals because the same brain region is involved in the
planning and execution of the those movements, and thus,
the recognition is more difficult. For these reasons, BCI for
neurorehabilitation, especially of the same limb, requires the
anticipatory recognition of natural and several movements
from the EEG activity, i.e., the recognition of the "intention”
of ”several movements” in the same limb. Recent studies
have proposed decoding upper limb information from EEG
signals [2], [3], [4]. Nevertheless, it is necessary to extend
these investigations to the anticipatory detection of several
self-initiated and self-selected movements of the same limb
with robot-assisted rehabilitation devices.

This work studied these issues in an experimental task
with seven healthy participants and a motor rehabilitation
device for the upper limb. The experiment consisted of two
self-initiated and self-selected movements of the right upper
limb while the EEG signal are recorded. The aim is to assess
the recognition of the two movement intention from EEG
signals. In addition, this work also explores the use of novel
classification models based on deep learning to address the
classification of multiple classes, i.e., the two movement
intention of the same limb plus a rest state. This is important
because the conventional way to classify EEG signals into
several classes employs multiclass-extended strategies (a vot-
ing scheme that combine the decisions of several classifiers
for a more accurate output) of bi-class classifiers such as
support vector machines (SVM) [5] and the use of a single
classification model might enhance classification accuracy
which could be significant for the development of online BCI
applications for neurorehabilitation or other applications.

In particular, we used convolutional neural networks
(CNN) and recurrent neural network (RNN) and compare
there performance with SVM to recognize the two movement
intention and a rest state from EEG signals. The analysis
of the EEG activity showed a significant event-related de-
synchronization in the motor-related frequency bands of the
EEG that precedes the movement initiation. This suggests
the existence of neural correlates useful for recognizing
movement intention. The three-class classification results, on
the other hand, showed a classification accuracy averaged



across-all-participant of 0.654+0.09, 0.68+0.15 0.65+0.11
for SVM, CNN and RNN, respectively. This indicates that
it is possible to recognize the intention to performs two
different movements of the same upper limb and the rest state
and that its is feasible to use deep leaning based classifiers
to accomplish this task.

II. MATERIALS AND METHODS
A. Data recording

Seven healthy subjects participated in this study. The
experiment was conducted in accordance to the Helsinki
declaration. All participants were duly informed about the
goals of the research. The experimental task consisted
of self-selected and self-initiated movements of the right
arm using a neurorehabilitation device Tee-R on passive
mode [6]. The movements were (A) supination/pronation
of the forearm (Fig.la) and (B) flexion/extension of the
arm (Fig.1b). During the execution of the experiment, EEG
signals were recorded from 62 scalp locations according to
the international 10/20 system using a g.Hlamp amplifier
(g.tec medical engineering GmbH, Austria). The reference
and ground electrode were placed over left earlobe and AFZ,
respectively. The EEG signals were acquired at a sampling
frequency of 1200 Hz and no filtering was applied. In
addition, two digital signals from Tee-R were also recorded
which indicated the movement type and the movement onset.

B. Experimental Design

The experiment consisted of many trials which was con-
trolled by three visual cues (See Fig.1c). The subject is first
shown for three seconds an image with the text “Relax” with
the robot in the home position. The subject is then shown for
12 seconds an image with a cross and indicating to perform
any of two movements (self-selected). Also, they were asked
to initiate the movement whenever they desired (waiting
around 6 seconds after the cross was first displayed while
avoiding any mental count). This means that they decided
when to initiate the movement (self-initiated). Finally, the
subject is shown for 3 seconds an image with the text “rest”
indicating rest, move or blink. Altogether, 120 trials were
recorded per subject, 60 trials of each movement type.

C. Data Pre-processing

EEG signals were low-pass filtered at a cutoff frequency
of 50 Hz using a 2nd-order zero-phase shift Chebychev-type
filter and a common average referenced (CAR) filter was also
applied. Subsequently, visual artifact rejection was applied to
rule out noise-contaminated trials. Afterwards, EEG signals
were trimmed to 15 seconds long trials starting from the
first visual cue and up to the second visual cue. Then, the
zero time reference was aligned with movement onset signals
obtained from the Tee-R. Therefore, all trials have the same
reference at the movement initiation (¢t = 0) but different
trials initiation (#;,;) and trial end (#.,4). According to this, the
time segment [#;,;, t;,;+3)s and [-3,0]s correspond to relax and
movement intention, respectively. Finally, the time segments
of all the trials were labelled according to the motor stage
(i.e., Relax, Int A, Int B) to construct the EEG dataset.

70

(b) Movement B

(a) Movement A

r

/ MOVEMENT
EXECUTION

MOVEMENT

RELAX INTENTION

+
1

'
self-paced
movement start

(c) Paradigm

Fig. 1. Illustration of the two movements: (a) movement A (supina-
tion/pronation of the forearm); (b) movement B flexion/extension
of the arm). (c) Description of the experimental paradigm for self-
selected and self-initiated movements

D. Event-related desynchronization/synchronization

To understand the task-related oscillatory EEG signals the
event related desynchronization/synchronization (ERD/ERS)
was computed for each electrode following [7] at the sig-
nificant level of o = 0.05. This analysis shows the dynamic
evolution of energy during the execution of the task. This
analysis is relevant because oscillations in the alpha and beta
bands can display either an event-related blocking response
[8] which can be associated to motion planning processes. A
bootstrap analysis of the time-frequency representation was
calculated in the frequency band [4 —45]Hz at the resolution
of 1Hz using Morlet wavelets. The trials were trimmed from
—2.5 to 1s allowing all trials to have the same length. The
energy changes relative to the baseline [—2.5,—1.5)s was
computed for each time and frequency.

E. Detection of Movement Intention

1) Features: The features were extracted through the
Common Spatial Pattern (CSP) algorithm which is a tech-
nique commonly used in bi-class classification scenarios in
MI tasks. This is because the goal of CSP is to find a
set of spatial filters that maximize the variance of signals
between two conditions. CSP algorithm has been extended to
a multiclass approach. In this work we use the One-Versus-
the-Rest (OVR) algorithm which is a multiclass extension
of CSP algorithm [9]. CSP features corresponding to Relax
state were extracted from the interval [t;,; + 2, t;,;+1)s and
CSP features corresponding to Int A and Int B) states were
extracted from [t;,; + 2, ti,;+1)s CSP filters were designed for
the frequency window 7-30 Hz and the log-variance of the
CSP-filtered signals were used as features. The application of
this multiclass CSP resulted a feature vector of 1116 (used as
input for SVM) or equivalently is the feature map of 62 x 18
(used as input for CNN and RNN). The number of spatial
filters and the number of features were selected in accordance
to prior studies with CSP features [10], [3].



2) Classifiers: In this research, 3 classifiers architectures
were implemented and assessed to discriminate between
Relax, Int A and Int B from EEG signals: i) Support
vector machine with Radial Basis function kernel (SVM) and
hyperparameters C = 1.0 and y = 0.01. In this classifier an
one-versus-one strategy (which yields to 3 binary classifiers)
was employed to address the multi-class classification; ii)
Convolutional neural network (CNN). The CNN architecture
employed is described in [11], [12]; and iii) Recurrent Neural
network. The RNN architecture consisted of 62 timesteps
with input size 18 and 128 hidden units. All of them were
implemented with Tensorflow Library [13] and executed in
a Geforce GTX Titan Xp GPU (Nvidia,USA).

3) Performance Evaluation: Classification accuracy was
assessed independently for each participant. The total dataset
was randomly splitted into two mutually exclusive sets. The
training set consisted of 80% of the data while the evaluation
set consisted of the rest 20% of the data. The algorithms
were trained in 400 steps. At each step, a batch of training
data (20% of the training set) is sampled randomly and used
to feed the classification model. Performance metric was
classification accuracy which was computed as:

TP+TN ]
TP+TN+FP+FN b
where TP is the true positive rate, TN is the true negative
rate, FP is the false positive rate and FN is the false negative
rate. The performance evaluation is repeated 10 times and
the distribution and mean =+ std of the classification accu-
racy were computed. The significant classification accuracy
chance level was considered as accuracycpance = 33.33%.

III. RESULTS

The movement type and the time instant of the movement
onset computed with the Tee-R activity was estimated in all
the trials for all subjects. The movement onset was lower than
Is in 2% of the trials while it was greater than 9s in 1% of
the trials. These trials were discharged and not used in the
rest of the work. Table I shows a summary of the movement
onset for all subjects and the average for all of them. The
average movement onset across all subjects was 5.32+1.76s
(minimum of 1.16s and a maximum 9.54s). The event-
related desynchronization/synchronization analysis was per-
formed for each subject independently. Fig. 2 shows these
results for one of the participants in electrodes C1 and
C2. Significant desynchronization (p < 0.05) is observed in
the two electrodes and in the motor-related ¢[8,13]Hz and
B[14,30]Hz frequency bands around the zero-time. However,
the desynchronization is more intense in electrode C1 than in
electrode C2, which is congruent with the motor task where
the participant moved the right upper limb. This significant
desynchronization starts in the movement intention phase
roughly at 0.7s prior to the movement onset and remains
significant up to the movement execution interval. No signifi-
cant desynchronization or synchronization is observed before
—1.0s.

The distribution of classification accuracy was obtained
with the three classification models for each participant. For

accuracy =
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TABLE I
SUMMARY OF MOVEMENT ONSET TIME FOR EACH PARTICIPANT (P TO
P7) FOR THE TWO EXPERIMENTAL MOVEMENTS

Participant Movement Mean £ SD Max Min
Mov A 431 0.54 6.24 354

P Mov B 4.62 0.85 734 3.50
Both 447 0.73 734 3.50

Mov A 4.79 0.60 6.47  3.50

P, Mov B 4.81 0.65 6.25 3.55
Both 4.80 0.62 6.47  3.50

Mov A 6.66 0.89 8.77  3.60

Ps Mov B 6.90 0.73 8.44 484
Both 6.78 0.82 8.77  3.60

Mov A 5.61 1.10 8.63  2.60

Py Mov B 5.79 1.15 8.66 2.14
Both 5.71 1.13 8.66 2.14

Mov A 5.30 2.01 8.58 1.67

Ps Mov B 5.85 1.92 872 174
Both 5.57 1.97 8.72 1.67

Mov A 4.99 1.26 811 1.75

Ps Mov B 4.76 1.28 7.15 174
Both 4.87 1.27 8.11 1.74

Mov A 4.96 1.95 8.00 1.63

Py Mov B 7.22 1.83 9.54 193
Both 5.08 1.89 9.54  1.63

Mov A 521 1.94 877 1.63

Avg Mov B 5.70 1.58 9.54 1.74
Both 5.32 1.76 9.54  1.63

2 Kl 0 1 2 Kl 0 1
Time (s) Time (s)

(a) CI electrode (b) C2 electrode

Fig. 2. Significant event-related desynchronization/synchronization
activity computed for participant 1 in C1 and C2 electrodes.
Horizontal axis represents time (units of s) while vertical axis repre-
sents frequency (units of Hz), colorbar represents percentage value
of changes. Significant desynchronization (p < 0.05) is observed
in the motor-related [8,13]Hz and ([14,30]Hz frequency bands
frequency bands from 1.0s, while no significant desynchronization
or synchronization is observed before 1.0s

all participants and in the three classifiers, the median of
the distributions were higher and significantly different than
the chance level of 33% (p < 0.05). To examine differ-
ences across participants and classification models, Table II
summarizes the classification results and shows the average
across all participants. The classification accuracy is greater
with the SVM in participant 2 (0.70 +0.04), with the CNN
in participants 1, 4 and 6 (0.73 £0.13, 0.72+0.04 and
0.68 +0.02, respectively) and with the RNN in participants
3, 5 and 7 (0.64 £0.05, 0.70 £ 0.05 and 0.67 £ 0.04,
respectively). Likewise, the average classification accuracy
was 0.65 £0.09, 0.68 £0.15 and 0.65 +0.11 for SVM,
CNN and RNN, respectively. This shows that, on average,
CNN provides the highest classification rates though the
accuracy provided by this classifier is only 3% greater than
the accuracy achieved with SVM and CNN.



SUMMARY OF CLASSIFICATION ACCURACY RESULTS FOR EACH
PARTICIPANT (P} TO Py) ACHIEVED WITH THE SVM, CNN AND RNN.

TABLE I

Participant Model Mean SD  Max Min
SVM 065 003 074 0.63

Py CNN 073 013 085 0.59
RNN 0.67 008 0.75 0.60

SVM 070 004 080 0.62

P CNN 068 006 079 0.57
RNN 065 011 079 0.37

SVM 062 002 067 0.59

Py CNN 0.60 005 0.69 0.50
RNN 064 005 071 0.58

SVM 070 004 076 0.64

Py CNN 072 004 0.69 0.58
RNN 059 005 067 0.53

SVM 0.67 003 070 0.59

Ps CNN 068 009 081 0.51
RNN 070 005 0.77 0.60

SVM 0.61 0.02 0.64 0.57

Ps CNN 068 002 071 0.64
RNN 066 002 070 0.62

SVM 062 003 072 0.58

Py CNN 065 005 074 0.59
RNN 0.67 004 074 0.61

SVM 0.65 009 080 0.57

Avg CNN 068 015 085 0.50
RNN 065 011 079 0.37

IV. CONCLUSION

This work studied the recognition of several movement
intention of the same limb using EEG signals recorded during
a self-selected and self-initiated motor task. In addition, the
work assessed the performance of convolutional and recur-
rent neural networks to recognize three motor stages, i.e., a
three-class classification scenario. For that, EEG signals from
seven healthy participants were recorded during a upper limb
movement task assisted by a robotic rehabilitation device.
The event-related desynchronization/synchronization analy-
sis of the EEG activity revealed significant power decrease
in the motor-related frequency bands that initiated roughly
0.7s prior to the movement onset. This indicates the existence
of neural correlates during movement planning associated to
the motor task, which can be used as features to recognize
movement intention.

To recognize between Relax, Supination/pronation inten-
tion and Flexion/extension intention, multiclass common
spatial patterns were used to extract features while support
vector machine (SVM), convolutional neural network (CNN)
and recurrent neural network (RNN) were used as classifica-
tion algorithms. The classification accuracy results were on
average 0.65+0.09, 0.68£0.15 and 0.65+0.11 for SVM,
CNN and RNN, respectively, which showed that the CNN
and RNN tecniques can be used for decoding movement in-
tention from EEG signals under a neurorehabilitation therapy.
These results cannot be compared with the state of the art
due to there are several differences with those works [2], [3],
[4], for instance, the experimental setup (e.g., execution of
different movements), the conditions of the participants (e.g.,
patients with motor injury), and the difference of the EEG
attributes used for classification (e.g., temporal features). The
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results presented herein showed the feasibility to recognize
intention of movement in different movements of the same
upper limb. The detection of the intention to move a limb
and the recognition of the type of movement is essential
to properly trigger robot-assisted rehabilitation robots. This
is a critical characteristic of BCI for neurorehabilitation
that aim to recovery physical functions but also the neural
reorganization since the user will attain fast and natural
brain control during the rehabilitation therapy. However, it is
still necessary to extend the numbers of subjects to achieve
significant statistics and to carry out further study to validate
this movement intention decoding in on-line settings with

real end-users.
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