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Abstract - Brain-Computer Interfaces (BCI) have proved to be 

a promising tool for neurorehabilitation. However, BCIs based 

on conventional methods are not highly accurate and reliable, 

different brain activity patterns are not optimal for all the users 

of BCIs and has low information transfer rate. Several studies 

have shown that the combination of different brain signal 

acquisition methods can lead to higher performance of BCIs. In 

this paper, we aim to investigate whether the performance of 

BCI increases if we combine Electroencephalography (EEG) and 

functional Near Infrared Spectroscopy (fNIRS) simultaneously 

for classifying Motor Imagery (MI) tasks of right- versus left-

hand grasping movement. The results show enhancement in 

classification accuracy using a multimodal approach of an EEG 

+ fNIRS BCI with an average increase of approximately 8-10% 

compared to only EEG-based BCI. This indicates that the hybrid 

approach in Brain-Computer Interface is capable of enhancing 

the BCI performance.   

 

I. INTRODUCTION 

Brain-Computer Interface (BCI) is a technology which 

provides an alternative way of communication with the 

external world using patterns of brain activity as a 

replacement of peripheral nerves and muscles [1]. The 

applications of BCI are not only limited to restoring 

communication and control in disabled patients due to stroke, 

autism, or epilepsy, but they have also gained usage by 

healthy users [2] [3]. Different types of non-invasive brain-

activity recording approaches can be used for BCIs, such as 

the Electroencephalogram (EEG), functional Near Infrared 

Spectroscopy (fNIRS), the Magnetoencephalogram (MEG), 

Positron Emission Tomography (PET) and many more [1]. 

Each modality has its own advantages and disadvantages.  

However, conventional BCI based on single modalities have 

shortcomings, such as low to moderate accuracy and 

reliability, low information-transfer rates, and user 

acceptance [4]. Different brain activity patterns are not 

optimal for all users of BCI. Neurophysiological signals can 

vary significantly from one subject to another which implies  

 
Pooja Verma is with the Technische Universität München, Germany 

(corresponding author; email: pooja.verma@tum.de).  

Alexander Heilinger is with g.tec medical engineering GmbH 

(corresponding author; phone: +43 7251 22240-0; e-mail: 
heilinger@gtec.at). 

Patrick Reitner is with g.tec medical engineering GmbH, (e-mail: 

reitner@gtec.at) 

                                                           
  

Johannes Grünwald is with g.tec medical engineering GmbH (email: 
gruenwald@gtec.at) 

Christoph Guger is with g.tec medical engineering GmbH (e-mail: 

guger@gtec.at). 
David Franklin is with the Technische Universität München, Germany. 

 

that some brain activity patterns can work better for some 

subjects while they lead to poor performance in others [5]. It 

has been reported that approximately 20% of users of a motor 

imagery BCI do not show performance sufficient to control. 
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EEG is a non-invasive technique which measures changes in 

voltages associated with neuronal activity using scalp 

electrodes. It is one of the most commonly used acquisition 

methods in the field of BCI. It has a high temporal resolution 

but has low spatial resolution and low signal-to-noise ratio 

[7]. 

 

On the other side, fNIRS measures hemodynamic activity in 

the form of blood flow, that is the concentration changes of 

oxygenated hemoglobin (HbO) and deoxygenated 

hemoglobin (HbR) resulting from neuronal firing [8]. It 

applies multiple source/detector pairs of Near Infrared (NI) 

lights at the wavelength between 650�950 nm. When light 

enters into the scalp, some of the photons reflect all the way 

to optodes, which is an optical sensor device, following a 

trajectory, wherein the HbO and HbR chromophores in the 

path absorb them with different absorption coefficients [9]. In 

general, fNIRS is non-invasive, portable and has a relatively 

low cost. However, it has low temporal resolution due to slow 

changes in NIRS signals and long delay introduced by the 

hemodynamic response to reach its maximum [10]. 

 

There are several feature extraction and classification 

methods available for hybrid BCIs [11]. fNIRS-based feature 

extraction uses the signal mean, the signal slope, signal peak, 

signal minimum, the skewness and kurtosis, or the number 

and sum of the peaks. Many of these features can be estimated 

������ ��� ���� ���� ���� ��������!���� �"� ���� �#�$������ �	�����

EEG-based feature extraction uses bandpower signals in the 

& ����'�"	�*#����������[12]. 

 

Many studies showed the successful implementation of EEG- 

and fNIRS- based unimodal BCIs [13] [14]. The fusion of 

these two modalities has also gained interest in research and 

development of BCI to improve its performance. However, 
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research in this field is still in its initial stage and a lot of 

development is required to use this novel method for clinical 

purposes.  In this paper, we aim to investigate the performance 

of BCIs by combining EEG and fNIRS modalities to classify 

motor-imagery tasks. 

 

II. METHODS 

A. Subjects and Data Acquisition 
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Fig 1. The configuration of EEG electrodes and fNIRS optodes. EEG 

electrodes (blue filled circles), NIRS detectors (green filled circles) and NIRS 

sources (red filled circles) were placed following the 10-5 system. 
 

B. Experimental Paradigm 
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Fig 2. Schematic illustration of the experimental paradigm. Each session 

consisted of a 60 s pre-rest, 20 trials of 42 s each, and a 60 s post-rest period. 

A short beep was played at the beginning and at the end of the task period. 
Every trial started with 2 s of instruction of the task, followed by 10 s of the 

actual task and a resting period of 30 s. 
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C. Data Analysis 
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0.2 Hz to reduce the physiological noise due to respiration, 

Mayer waves and heart pulsation. Epochs of 42 s from the 

data with 12 and 20 s of baseline before and after task were 

extracted for each trial. After that, baseline correction was 

performed by subtracting the average from -12 s to -2 s 

(relative to trial onset), followed by a detrending stage. For 

classification of right- and left-hand grasping movements, 

mean and slope of HbO and HbR concentration changes were 

extracted using a moving time window of 3 s and step size of 

1 s. A linear discriminant analysis (LDA) [16] was used as a 

classifier. Validation was performed by 10 repetitions of 10-

fold cross-validation at each time window for both HbO and 

HbR.  

~~����=�����?�	�� "����	��� ��� ����&- ����'-band using a 4th-

order recursive Butterworth bandpass filter from 8-25 Hz. 

Epochs were extracted the same way as fNIRS epochs were 

extracted. The data from -12 s to -2 s (relative to task onset) 

was subtracted from the EEG signals for baseline correction. 

To reduce dimensionality and maximize spatial 

discriminability, the EEG signals were projected onto the four 

most discriminative Common Spatial Patterns (CSPs) [17], 

which were computed for each subject individually. After this 

spatial filter, the feature vector was developed by calculating 

the variance by using the same moving window and step size 

as used for the fNIRS features. The extracted EEG features 

then were normalized and log-transformed. For evaluating the 

performance, a randomized 10 repetitions of 10-fold cross-

validation were applied on all datasets.  All processing steps 

were subject to cross-validation. 

The main challenge in the study was to combine different 

classifiers. Many studies have shown results by combining 

feature vectors of different modalities together for example, 

in [15], LDA was applied as a meta classifier in which weights 

of the classifier were re-estimated within each cross-

validation step, [18] fused all the features of EEG and fNIRS 

together and applied PCA for dimensionality reduction and 

[19] used shrinkage LDA as a meta classifier and output of 

individual classifiers were combined to create feature vectors 

for meta-classifier. We explored all the possible combinations 

of EEG and fNIRS i.e. EEG + HbO, EEG + HbR, EEG + HbO 

+ HbR. There are various methods for combining classifier 

such as majority voting rule, median rule, average rule and 

many more [20]. In this study, we applied meta classifier 

based on decision method. The class probability was 

computed by applying weights in the case of LDA (EEG, 

HbO and HbR). The class with maximum probability was 

then selected as the result of the meta classifier. Please note 

that we gave equal weights to EEG and fNIRS chromophores 

in meta classification. The cross-validation of the meta-

classifier also followed the same approach of cross-validation 

as for fNIRS and EEG data analysis. The results from the 

individual classifiers: HbO, HbR, EEG and the combination 

of these classifiers are summarized in the next section. 
 

III. RESULTS 

A. Classification Accuracies 

The classification accuracies were calculated for EEG, HbO, 

HbR, HbO + HbR, HBO + EEG and HbO + HbR + EEG, 

respectively. The results are summarized in Table 1. 

Accuracies are given as the percentage of correctly classified 

Fig 3. Classification accuracy plots of all subjects. The black line indicates the mean accuracy at different time points for all the subjects. The grey 
shaded region shows the task time period (0-10 s). The time is given relative to the task onset. 
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trial in the test set. The chance level for this two-class 

experiment is 50 %.  

 

 
Table 1. Overview of all classification accuracies corresponding to 

different approaches. 
  

Using only a single biosignal for classification (i.e., HbO, 

HbR, or EEG individually), the subjects S1, S3, and S8 

showed the highest classification accuracy using HbO, the 

subjects S2, S4, and S5 showed the highest accuracy using 

HbR, and the subjects S6, S7, and S9 showed the highest 

classification accuracy using EEG. 

 

By combining HbO and HbR with EEG, three different 

approaches were taken. The subject S8 scored the highest 

accuracies by combining HbO + EEG, two subjects S2 and S6 

scored the highest accuracies using HbR + EEG and the 

subject S1 scored the highest accuracies by combining HbO 

+ HbR + EEG. S7 exhibited approximately the same 

accuracies by implementing HbO + EEG and EEG + HbR, the 

subjects S4 and S5 showed almost the same maximum 

classification accuracies using HbR + EEG and HbO + HbR 

+ EEG. In fig. 3, the individual classification accuracy plots 

of all the subjects are shown with different colors and the 

average classification accuracy considering all the subjects is 

shown with a thick black line for different modalities and their 

combinations. The plots show that combining all three 

modalities (EEG + HbO + HbR) yields higher amplitudes as 

compared to their individual classification accuracy plots.   

The results highlight that the hybrid approach in BCI has 

ability to enhance the BCI performance. 

  

IV. DISCUSSION 

In this study, signal acquisition methods based on fNIRS and 

EEG were combined to test if a higher classification accuracy 

can be yielded using the combined modalities. A hybrid BCI 

which uses features of both biosignals was used to classify the 

brain activity while participants were performing a motor 

imagery task for right- and left-hand movement. 

 

In the past, several studies have demonstrated that combining 

fNIRS and EEG enhances the performance of MI-based BCI 

systems [15], [16]. Here, we investigated the best 

combination of features for controlling a hybrid BCI. The 

results showed that EEG and fNIRS features yield similar 

results individually (~70%). However, as shown in Table 1, 

combining the features of both modalities lead to higher 

accuracies on average compared to using the modalities 

independently. On average, the accuracy of the hybrid system 

using HbR, HbO, and EEG was higher than using any 

subsystem of fNIRS and/or EEG. The relatively weak 

performance of the EEG classifier may be attributed to the 

small number of EEG channels. In this setup, 21 EEG 

electrodes were used, which is fewer than other studies [16]. 

 

All subjects except S9 were naïve to the MI attempt. The 

inexperience could also have an influence on the performance 

results. Another factor that could have impaired the 

performance of the EEG classifier is the low number of trials. 

In particular, this could have negatively influenced CSP, 

which is an approach deeply affected by overfitting. Being a 

supervised approach that makes use of labelled data, the 

limited amount of training data is an important role as only 54 

out of 60 trials available for performance evaluation due to 

the 10-fold cross-validation. The number of 60 trials was 

chosen due to time management. One session of 20 trials 

lasted 20 minutes which was long for the concentration of the 

subjects. We acknowledge that it is a relatively small number 

compared to other studies [21]. 

 

In the results it is shown that S6 and S9 had lower 

performance when combining modalities than with EEG 

alone. This small difference could be due to the average 

calculation of 10 repetitions of 10-fold cross-validation as the 

two accuracies are nearly identical and only vary in approx. 

1-2%.  

 

One of the main disadvantages using this hybrid BCI is the 

long time it takes to set up both modalities [15]. Dry 

electrodes may provide an interesting alternative to overcome 

this issue [22]. Also, the long trial duration of 42s is 

problematic as it is difficult to maintain the concentration 

level over such a long period of time. More research is 

necessary to reduce the recording time. 

 

In Fig. 3, it can be seen that the evolution of the classification 

accuracy over time depends on the modality. These are 

important observations for further studies and particularly for 

implementation of online feedback and classification. 

V. CONCLUSION 

In this study, a hybrid BCI using fNIRS and EEG biosignals 

was investigated. It was found that combining fNIRS and 

EEG features for classification enhances the performance of 

the BCI. In future studies, real-time systems using fNIRS-

EEG hybrid BCIs will be investigated. 
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Subject 
HBO 

[%] 

HBR 

[%] 

EEG 

[%] 

HBO + 

EEG [%] 

HBR + 

EEG 

[%] 

HBO + 

HBR + 

EEG [%] 

S1 96.7 93.4 79.5 95.5 93.5 97.0 

S2 65.0 70.3 62.8 63.3 72.3 79.1 

S3 73.7 72.7 57.8 73.2 71.8 71.7 

S4 74.2 87.8 53.5 71.8 85.7 86.5 

S5 63.0 64.8 60.7 60.8 67.0 67.3 

S6 64.7 63.8 83.3 75.7 80.0 81.8 

S7 55.8 60.8 73.5 71.8 72.6 70.1 

S8 76.8 69.0 64.5 80.5 71.2 75.7 

S9 70.7 62.2 95.2 93.7 94.7 94.3 

Average 71.2 71.6 70.0 76.2 78.7 80.0 
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