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Abstract — A novel mobile healthcare solution for remotely 

monitoring neuro-cognitive efficiency is here presented. The 
method is based on the spatio-temporal characterization of a 
specific Event-Related  Potential (ERP), called P300, induced in our 
brain by a target stimulus. P300 analysis is used as a biomarker: 
the amplitude and latency of the signal are quality indexes of the 
brain activity. Up to now the P300 characterization has been 
performed in hospital through EEG analysis and it has not been 
experimented an algorithm that can work remotely and learn from 
the subject performance. The proposed m-health service allows 
remote EEG monitoring of P300 through a ‘plug and play’ system 
based on the video game reaction of the subject under test. The 
signal processing is achieved by tuned Residue Iteration 
Decomposition (t-RIDE).  The methodology has been tested on the 
parietal-cortex area (Pz, Fz, Cz) of 12 subjects involved in three 
different cognitive tasks with increasing difficulty. For the set of 
considered subjects, a P300 deviation has been detected: the 
amplitude ranges around 2.8μV – 8μV and latency around 300ms-
410ms. To demonstrate the improvement achieved by the proposed 
algorithm respect the state of the art, a comparison between t-
RIDE, RIDE, Independent component analysis (ICA) approaches 
and grand average method is here reported. t-RIDE and ICA 
analysis report the same results (0.1% deviation) using the same 
dataset (game with a detection of 40 targets). Nevertheless, t-RIDE 
is 1.6 times faster than ICA since converges in 79 iterations (i.e. t-
RIDE: 1.95s against ICA: 3.1s). Furthermore, t-RIDE reaches 80% 
of accuracy after only 13 targets (task time can be reduced to 65s); 
differently from ICA, t-RIDE can be performed even on a single 
channel. The procedure shows fast diagnosis capability in cognitive 
deficit, including mild and heavy cognitive impairment. 
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I.  INTRODUCTION 

Neurological disorder is a heavy cause of mortality. Among the 
neurological disorders Alzheimer disease (AD), Parkinson’s 
disease (PD), Amyotrophic Lateral Sclerosis (ALS), 
Epilepsy,Mild Cognitive Impairment (MCI) and other dementias 
are estimated to constitute the 11.67% of total worldwide deaths 
(in 2005), and projections show an increment of 0.55% in the next 
15 years, despite of drugs and specialized treatments [1]. Only in 
the US, 5.4 million people are affected by AD, with one new case 
appearing every 33 seconds [2]. The cost for providing care only 
for AD patients in the US was $200 billion in the 2012 and it is 
projected to grow to $1.1 trillion per year by 2050 [2]. 
Nowadays, the P300 analysis, which is a particular Event-
Related brain Potentials (ERPs), is a widely used diagnostic tool 
for diagnosing and monitoring neuro-degenerative pathologies. It 
has been demonstrated that P300 latency and amplitude reflect 
the degree of cognitive decline [3]. The main problems related to 
the methods currently in use are: i) they are performed only in 
specialized centers scattered only in large urban centers; ii) the 
protocol to derive the P300 is time consuming ( > 10 min) and 
when performed by electroencephalography (EEG) it requires the 

processing of at least 16 EEG channels (although recently some 
studies using 8 electrodes have been proposed [4,5]). ERPs are 
usually analyzed using EEG and functional near-infrared 
spectroscopy (fNIRS) which are the leading non-invasive neuro-
imaging solutions in terms of cost and portability [6]. While EEG 
offers a temporal resolution of about 0.05s and spatial resolution 

of ∼10 mm, fNIRS provides worst temporal resolution (∼1s) but 

higher spatial resolution (∼5mm) [7]. Many solutions have been 

already proposed in literature [8] for a correct and fast P300 
extraction and detection starting from EEG raw data, in particular 
in Brain Computer Interface (BCI) applications [9-12]. 
Remarkable solutions involve the use of fNIRS for drowsiness 
detection while driving [6], EEG-based BCI experiment using 
Bayesian Spatio-Spectral Filter Optimization (BSSFO) [14]. 
Hybrid systems combining EEG and fNIRS have also been 
implemented to control a four directions mechanical arm in BCI 
applications [7]. However, since all these methods [6-13] are 
based on machine learning algorithms and on classification, they 
are not suitable as a diagnostic tool since their aim is only the 
detection of the P300 pattern but they are not oriented to P300 
characterization in terms of amplitude, latency and brain area 
involved. For this reason, the most commonly used approach to 
measure and characterize the P300 in clinical environment are the 
Independent Component Analysis (ICA) [15], the Principal 
Component Analysis (PCA) [16] and the ‘grand average’. 
Nevertheless, these approaches start their computations from 
some “a priori” assumptions that very often are not at all verified 
and valid for the P300.The application of mobile technologies for 
these analysis opens very interesting scenarios for new kind of 
approaches and investigations. The constant advances in personal 
electronic devices (PDAs) in terms of computational resources, 
mobile communication (3G, 4G, etc.) and cloud computing, 
together with the new wearable solutions, the fast decrease of the 
costs in consumer electronics, offer a number of opportunities to 
create efficient mobile health-care (m-Health) solutions. M-
Health is the new edge on healthcare innovation delivering 
health-care anytime and anywhere, surpassing geographical, 
temporal, and even organizational barriers with low and 
affordable costs [17-22]. All the mentioned solutions can be 
successfully integrated into m-health systems favoring elderly 
care [20]. 
In this paper we present a novel EEG-based m-Health solution 
for neuro-cognitive impairment diagnosis. The tool is based on 
P300 spatio-temporal characterization, which is directly 
connected to the cognitive capability of the patient. The 
characterization is based on a tuned Residue Iteration 
DEcomposition (t-RIDE) approach optimized for P300 analysis 
which allows to extract spatial (topography, source of ERP, etc.) 
and temporal (latency, peak, etc.) parameters in order to detect 
neuro-cognitive impairment.  
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TABLE I.  CLINICAL P300 REFERENCE FOR DIAGNONIS 

 
Fig. 1. Evidence of P300 experimentally obtained from an healty subject on PZ 

The solution represents the first implementation of a complete 
‘plug and play’ automatic m-Health service, which allows remote 
data analysis. To the best of our knowledge, no EEG-based m-
health system performing the remote cognitive impairment 
monitoring has been implemented in a single wearable tool. The 
main advantages of this m-health solution are: i) improved 
diagnosis results since the new algorithm for P300 
characterization allows the tracking of subject clinical history; ii) 
the architecture knocks down geographical limits since the 
physician has access to data from everywhere and every time; iii) 
costs reduction for both the patient and the government, 
supporting  domestic healthcare; iv) improvement in the life 
quality of the patients, which can be tested and treated at home 
(beneficial for people affected by PD, AD, ALS). Summarizing, 
the novel test procedure takes just few minutes (i.e.: the response 
is almost in real time), and the analysis equipment is non-invasive 
and just needs few EEG channels. The paper structure is outlined 
in the following: Section II provides basic knowledge on the 
P300 features and briefly outlines the state of the art for its 
automatic detection; Section III describes the novel m-Health 
architecture and details the t-RIDE algorithm. Section IV 
presents the experimental results coming from in vivo 
measurements on 12 subjects (age 26.5±3.5), focusing on both 
the algorithm performance and the P300 spatio-temporal 
characterization. Section V concludes with final observations.  

II. EVOKED RELATED POTENTIALS  

A. Evoked Related Potential: the P300  

The P300 is a positive deflection in the human brain event-
related potentials (ERPs) evoked when a subject is actively and 
cognitively engaged in the discrimination of one target stimulus 
by not-target ones (Fig 1) [23, 24]. In literature [24], ‘stimulus’ 
is a single external event (audio, visual, tactile, etc.) delivered to 
the subject under test. The target stimulus is the event to be 
recognized among different ones (not-target). A game/task is an 
assemble of stimuli (target and not-target ones). The nature of the 
external event to the P300 occurrence is irrelevant (we used 
visual stimuli), but, in a single task, the probability of target 
occurrence has to be lower than the not-target one. This well-
consolidated procedure is generally known as the "oddball" 
paradigm [23, 24]. The P300 characterization is mainly based on: 
the latency, the amplitude of the detected pulse, the location and 
the source. The P300 latency is heavily affected by trial-to-trial 
variability (P300 jitter) within a given experimental condition 
and, according to [25], ranges from 290ms to 447.5ms depending 

on the cognitive difficulty of the discrimination. The P300 
amplitude is considered as the peak-to-peak amplitude between 
the previous deflection (N200) and the P300 maximum value (see 
Fig. 1). According to [25], P300 amplitudes can reach even 
37.7μV depending on the age and on the rarity of the target 
stimulus. The intracerebral origin of the P300 wave is not known 
and its role in cognition not clearly understood. Generally, the 
P300 is more clearly detectable in the central parietal cortex [23]. 
The brain mapping of P300 is computed by a topography.  

B. P300 as Biomarker for Cognitve Impairment Diagnosis   

P300 latency and amplitude reflect the degree of cognitive 

decline in dementing illness [3]. A single P300 pulse is 

anticipated by further ERPs (i.e. P100, N100, P200 and N200 – 

see Fig. 1) which classify the cognitive process. The P300 

characterization as biomarker for cognitive impairment is based 

on the simultaneous evaluation of amplitude and latency. For 

this aim, the proposed m-Health tool identifies a new figure of 

merit (FoM), defined as: 

𝐹𝑜𝑀 =  
𝑃𝑒𝑎𝑘−𝑡𝑜−𝑃𝑒𝑎𝑘 (𝑃300−𝑁200) 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 
 
[ 

𝜇𝑉

𝑚𝑠
]
          (1) 

where the relative peak distance between P300 and N200 

potentials are considered. According to [26], it is possible to 

extract threshold values for amplitude and latency for 26 

healthy subjects (aged 64.9 ± 10.9 years), the P300 amplitude 

is > 5.3µV, the latency < 349ms [26]. From these clinical 

values, we estimated that for healthy subject the FoM is > 0.01 

μV/ms.   FoM ranging between 0.008μV/ms<FoM<0.01 

μV/ms, defines potentially healthy subjects. Table I reports 

threshold values according to [26].  

C. Brief Review of the Automatic P300 Detection Methods  

Plenty of methods have been presented in literature for P300 

detection in single-trial and averaged-trials environments [4-13, 

27, 28]. Nevertheless, the use of conventional ERP averaging 

(grand average) is inappropriate since the intrinsic variability of 

the ERP leads to distortions of latencies, reduction in maximum 

amplitude (peak) and a broadening of the component.   

Woody in [27] suggested a method for single-trial ERPs, based 

on an iterative strategy. At first, the latencies are estimated from 

the cross-correlation between the grand average (first template) 

and each trial. Then, all single-trials are aligned to the estimated 

latency and averaged again, leading to a second template. 

Finally, those steps are re-iterated until the templates 

convergence. The main limitation of this approach is the 

hypothesis that the ERP is monolithic (only latency jitter 

without shape distortion) which is not verified in the reality. 

Other latency detection methods (i.e. peak-detection) face the 

same problem. Different approaches such as independent 

component analysis (ICA) [15] and principal component 

analysis (PCA) [16] need a starting assumptions on the 

amplitude and latency value and need to monitor a high number 

of EEG electrodes. ICA assumes that there are independent 

sources generating signals, which are projected to the scalp 

[15]. Nevertheless, the source of P300 is not known a priori 

resulting in the impossibility to apply this method for this 

particular ERP. PCA, instead, separates the signal into 

orthogonal components but the limitation of this methods leads 
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into the assumption of amplitude variation within trials 

excluding latency jitter [16]. A further class of methods are 

based on deconvolution. Those approaches attempt to separate 

stimulus-locked and response-locked ERP component 

assuming a linear model of ERP interaction. Specifically, the 

ERP is de-convoluted into –at least – two ERP components, one 

stimulus-locked s(t) and one response-locked r(t). The main 

limitation of this model is the undesired amplification of slow 

noise components (≈1Hz). Since the ERP alignment is 

performed by using the physical response of the subject (go-

tasks) to the target as the time-base, de-convolutive methods 

fail to find latency jittered components in tasks with no external 

response (no-go tasks), which is our situation. The method 

adopted in this work is a tuned version of the residue iteration 

decomposition (RIDE) which is a hybrid approach based on 

linear superposition and iterative residual calculation [29]. The 

RIDE allows to detect spatio-temporal ERP characteristics with 

no limitations in terms of number of electrodes and number of 

target stimuli. RIDE considers a linear superposition model of 

single-trial ERPs. Except for the noise ε, the single-trial EEG is 

decomposed into two components: stimulus-locked (S) and 

cognitive-locked (C) components. In go-task, i.e. task in which 

the subject is asked to perform a motor action, a third 

component response locked (R) has to be considered (but this 

is not our case). A single-trial EEG, including EEG background 

activity and noise, can be expressed as:  

𝐸𝐸𝐺𝑖(𝑡) = 𝑆(𝑡) + 𝐶(𝑡 + 𝜏𝑖) +  𝜀(𝑡)                 (2) 

Where τi is the latency of component C in the i-th trial and is 

characterized by a distribution ρ(t) assumed to be Gaussian (but 

this is not a limitative hypothesis). A conventional average over 

N trials would result in:  

< 𝐸𝑅𝑃 > =  𝑆(𝑡) +
1

𝑁
∑ 𝐶(𝑡 + 𝜏𝑖)

𝑁

𝑖 

+
𝜀(𝑡)

√𝑁
=   

𝑆(𝑡) + ∫ 𝐶(𝑡 + 𝜏) 𝜌(𝜏) 𝑑𝜏 +  
𝜀(𝑡)

√𝑁
= 𝑆(𝑡) + 𝐶 ∗ 𝜌 +  

𝜀(𝑡)

√𝑁
  (3) 

Equation 3 shows that, although noise is reduced, the average 

creates a broadening of the C component which is convolved 

with its distribution. Neglecting ε, it is possible to consider the 

residues in single-trial:  

 𝑅𝑒𝑠𝑖(𝑡) = 𝐸𝐸𝐺𝑖− < 𝐸𝑅𝑃 > = 𝐶(𝑡 + 𝜏𝑖) −   𝐶 ∗ 𝜌   (4) 

If the residues are aligned to their τi through cross-correlation 

jitter-latency estimation and averaged again, the distortion are 

reduced and a first estimation of C is computed as:  

𝐶1(𝑡) = < 𝑅𝑒𝑠 > = 𝐶(𝑡) −  (𝐶 ∗ 𝜌) ∗ 𝜌            (5) 

By replacing C1 in (3), it is possible to obtain a first estimation 

of S1. The procedure is then iterated using a first ERP estimation 

[ERP1 = S1 (t) + C1 (t+τ1)] leading at the end to a more precise S 

and C estimation. After the n-th iteration, the components Cn 

and Sn are given by:  

𝐶𝑛(𝑡) =  𝐶 −   𝐶 ∗ 𝜌0 ∗ 𝜌1 … . .∗ 𝜌𝑛 → 𝐶                (6) 

𝑆𝑛(𝑡) =  𝑆 −   𝑆 ∗ 𝜌0 ∗ 𝜌1 … . .∗ 𝜌𝑛 → 𝑆                (7) 

After n iterations, Cn and Sn  converge to C and S since the 

iterative convolution by ρ  approaches to zero. Differently from 

similar iterative methods (i.e. Takeda et al. [28]), the RIDE 

method does not introduce systematic artifacts and its 

convergence is fast (≈ 10 iterations). The RIDE algorithm has 

been tested for different trends of ρ and it has been verified to 

be robust and accurate [29]. Due to RIDE advantages which 

comprise low number of target stimuli, no-go task applicability, 

few electrodes needed, good accuracy, information regarding 

single-trial, etc., the RIDE method was selected as core for our 

diagnostically tool but has been fine tuned for P300 detection 

(t-RIDE).  

III. SYSTEM ARCHITECTURE  

The system is made up by two sides: the patient and the medical 

ones, which communicate each other by cloud technology using 

TCP/IP connection. Fig. 2 summarizes the overall architecture. 

In the implemented solution, the patient wearing a wireless 

EEG headset, can perform autonomously at home three 

different oddball tasks of increasing cognitive difficulty on a 

PC, tablet or smartphone. The tests are completely driven by the 

software, which is totally ‘plug and play’ and no user 

intervention is needed. The oddball protocol (described in detail 

in the next sections) and the t-RIDE parameters are based on a 

configuration file (.txt) which is cloud-shared with the medical 

center in order to be eventually modified by the physician. EEG 

data are immediately in-loco processed by t-RIDE and the 

consequent medical report (in pdf format) is created and, in real 

time, cloud-shared with the physician. The report contains the 

spatio-temporal P300 characterization. The physician, then, 

basing on the data and on the clinical history of the patient (the 

previous output files are never deleted) performs a personal 

diagnosis. In case of cognitive impairment monitoring, the 

physician can, for instance, remotely verify the effectiveness of 

a drug treatment. In case of periodical analysis for predisposed 

subject, the physician can detect the early presence of neuro-

impairment. It should be pointed out that the m-Health system 

only performs accurate measurements and data processing but 

the final diagnosis is left to the human component of the m-

Health service (medical center, physician, etc.). 

A. The Hardware 

The patient side equipment is: i) the EEG wireless headset 

(sensors and gateway), ii) the PC or tablet, etc. with TCP/IP 

connection, iii) the test game (stimuli delivering) defined with 

the medical center and iv) a user-friendly software, which 

collects data, analyzes (by t-RIDE) and uploads them on the 

cloud. The patient side performs data collection and P300 

detection: EEG data collected by the wireless EEG headset are 

sent to the gateway (i.e. PC) which delivers the video game/test 

and performs EEG processing. Once processed, the results are 

uploaded on the cloud and made available for the medical  

 
Fig. 2. Overall Architecture of the m-Health service proposed.  
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center. In our experiments, the EEG headset is a 32-channels 

wireless recording system exploiting active electrodes 

(conditioning integrated circuit are embedded in the electrode 

performing amplification, filtering and digitalization). The 

EEG headset is the g.Nautilus commercial device by g.Tec. 

According to the international 10-20 system for the EEG, eight 

channels are considered (Fz, Cz, Pz, Oz, P7, P3, P4, P8 – in red 

in Fig. 3.a) referenced to AFz (in yellow) while the right ear 

lobe (A2) is used as ground (in green). EEG signals are recorded 

during the test and are synchronized with the delivered stimuli 

by the gateway, which drives the test. The gateway is a PC with 

proper wireless communication interfaces for the BLE link and 

an efficient wide-area communication interface (i.e. TCP/IP). 

We used a PC (Intel i5, RAM 8 GB, 64 bit) [30-32]. EEG data 

collection, the game/stimuli generation and subsequent data 

processing are performed by Simulink. Once the P300 

processing is completed, output files are delivered both to the 

patient (immediate response) and to the physician, which 

constitutes the decision-maker and, by visual inspection, can 

perform a remote diagnosis basing on t-RIDE measures. The 

medical side of the m-health consists of: i) the personal 

electronic device (PC, tablet, etc.), ii) the configuration file for 

the signal processing to be loaded on the cloud and iii) the 

clinical database stores all datasets describing the medical 

history of the patient. The physician has a two possibility of 

interaction with the system: on one hand, he can modify the 

cloud-shared parameter file (.txt) which is loaded by the 

gateway before each test and contains directives both for tasks 

both for signal processing (i.e. window of interest, channels, 

etc.); on the other hand, the physician can consult the results of 

the test. The results are the spatial (topography i.e. brain 

mapping) and temporal (latency, peak, etc.) characterization of 

the occurred P300. Those are cloud-stored and the physician 

has always access to clinical records of the patient in order to 

evaluate his medical history. In this way, the evaluation of the 

evolution of the neuro-cognitive impairment can be evaluated. 

Data security will be guaranteed by proper-compounded 

authentication systems (i.e. fingerprint or double password). 

B. The Cognitive Tasks (oddball test)  

The remotely performed cognitive tasks are based on the 

oddball paradigm [24] and are delivered by the gateway through 

visual stimuli (videogame). The patient performs three different 

no-go cognitive tasks (task A, B and C) of increasing difficulty, 

where he has to recognize the rare target stimuli among the not-

target ones. Before each task, for a 20s slot no stimuli are 

presented in order to allow the run out of the filter effect. 

Task A. On a black screen (15’’), a red circle and a green 

triangle are repeatedly and randomly flashed. The subject is 

asked to count in mind the occurrence of the less frequent target 

stimulus, which is the green triangle. The flashing stimuli are 

randomly presented with non-uniform probability: the target 

stimulus probability is 20%. The inter-stimuli time is 

randomized and has a uniform distribution ranging from 1 to 2 

seconds. Each visual stimulus persist on the screen for 200ms. 

The subject distance to the screen is approximately 1.5m. 

 
Fig. 3. a) Channels of interest (in red) according to the international system 10-

20. In yellow the nasion reference and in green the ear-lobe ground. b) 

Demontrative picture of the EEG wireless headset. c) time diagram of task A.  

The time length of task A is 127s (approx. 25 target stimuli 

presented). Since task A involves both chromatic and 

geometrical mental classification, the P300 is expected to be 

more evident. In Fig. 3.c a time-diagram of task A is presented.  

Task B. The protocol of task B is the same as task A but the 

flashed visual stimuli are different. There is no more chromatic 

classification: a red triangle (target stimulus with 20% 

probability of occurrence) and a red circle (not-target stimulus) 

are randomly delivered to the subject. The cognitive difficulty 

for task B is increased since the human brain classification is 

only based on the geometrical shape.  

Task C. Task C preserve all the configuration of task B but the 

classification based on the geometrical shape is made more 

difficult by the presence of stimuli with very similar shapes ( 

not-target: red circle; target: red ellipse).  

Task A has been developed according to medical standard 

protocols and aims to verify that t-RIDE results match the 

literature reference [24, 26]. Task B and C have been developed 

to verify and quantify the degradation of P300 [3].  

C. The Software: Spatio-Temporal P300 Characterization 

The main software driving the m-Health system, managing data 

collection, delivering the test, processing the data and providing 

the cloud-communication is a Simulink-based application.  

Data Collection. A dedicated Simulink block for data collection 

managing the API of the headset has been developed. Data are 

sent to the gateway trough Bluetooth low energy (BLE) 

protocol. The above mentioned eight EEG electrodes (Fz, Cz, 

Pz, Oz, P7, P3, P4, P8) are recorded at 500Hz, with 24-bit 

resolution, input range ±187.5mV and filtered using a bandpass 

(Butterworth, 8th order 0.5-100Hz) and a notch (Butterworth, 

4th order 48-52Hz) filters. Those filters are embedded into the 

signal conditioning circuit of the EEG electrodes. The recording 

scheme is monopolar and the frame length is 8 [30-34].  

Cognitive Test. As soon as the test is lunched (the software is 

‘plug and play’ i.e. the subject just have to wear the EEG 

headset, select the task and press ‘play’), after a 20 s wait time, 

the visual test/game is delivered on the monitor.  

The stimuli are controlled by a numeric signal, which controls 

a multiplexer and provides to the video device the selected 

image. EEG data and the numeric signal driving the test/game 

are stored. At the end of the task, t-RIDE starts automatically.  
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Fig. 4. Schematic flow-chart of the signal processing. The signal processing is 

applied to each channel monitored and derived signals. 

Signal Processing. The automatic P300 spatio-temporal 

characterization is based on a tuned version of the RIDE 

approach (t-RIDE) optimized for P300 analysis. The signal 

processing, schematically outlined in Fig. 4, is a three stage 

approach which involves pre-processing, t-RIDE application 

for P300 characterization, output preparation and sending. The 

signal processing is performed for each monitored channels and 

derivative channels obtained by averaging different electrodes. 

In the following, a single-channel processing chain is outlined. 

Pre-processing. The signal collected by the gateway is further 

low-pass filtered (Butterworth, 6th order, fstop = 15Hz) and 

aligned to the stimulus signal. This is a further numeric filter 

and (different from the previous mentioned ones). 

Subsequently, EEG signal is decomposed into epochs of 1s: 

each epoch starts 100ms before the rising edge of the stimulus 

(target and not-target) and ends 900ms after it. Epochs are fitted 

into a 6th order polynomial curve. The selected polynomial 

order is the highest one able to eliminate of the slow bias drift 

without modify the ERP patterns.  The resulting curve fitting is 

subtracted to the EEG signal, which is then centered (offset 

cancellation) and normalized. Thus, the pre-processing is 

completed and signals are ready to be processed.  

t-RIDE. The t-RIDE algorithm is made up by two phases: i) 

window optimization and ii) results extraction. RIDE algorithm 

is a generic approach for ERP extraction but it needs to be tuned 

for P300 calculation. In order to reduce the computational effort 

and since it is not known ‘a priori’ the source of P300, at first 

only one signal derived from the average of Pz and Cz is 

considered for the window optimization. A first default 

rectangular window is set to 250 ms – 400ms after the target 

stimulus. The first window sizing can be customized by the 

physician.  A starting estimation of the latency C is performed 

using the Woody’s Method and a first characterization of the 

P300 is performed [27]. Based on template matching, the cross-

correlation between the template of P300 and a single trial EEG 

is performed and residuals are calculated separating the S and 

C components. The procedure is iterated until the latency C in 

single trials stops changing monotonically. When the C latency 

convergence is reached, the results are stored and the procedure 

is iterated again with a different windowed EEG signal. The 

start of the window is iteratively 4ms right shifted while the end 

of the window performs 8ms right shift. Seven different 

windows are considered in order to cover the full time range in 

which the P300 can occur [25]: the last computation is 

performed on the rectangular window of 278 – 456ms after 

target stimulus. At each iteration, the evaluated P300 maximum 

amplitude related to the particular used window is stored.  At 

the end of the window definition cycle, the window that has led 

to the highest P300 peak is considered the optimized window. 

After the window optimization phase, the procedure for results 

extraction is performed on all the pre-processed channels. The 

results extraction phase involves the application of the RIDE 

method on the optimized window previously computed. For 

each channel, the P300 is totally reconstructed in the window 

hooking the S component to rising edge of the target stimulus, 

while the C component is appended to S using the estimated 

value of its latency. 

Outcomes. For each channel, information about latency and 

peak are presented. The presented approach needs to estimate 

the latency of the C component (which coincides with the P300) 

for each single-trial so information about latency and peak 

variation trial-by-trial can be estimated. A statistical analysis of 

the data informs the physician of the medium latency and peak. 

The P300 characterizing output files are automatically stored 

on the cloud and consists of:  

i) Diagrams showing the time-domain waveforms of target 

stimuli compared to no-target for each channel and task;  

ii) Maps showing information on the P300 generation and 

propagation for each task (topography);  

iii) An automatically generated table that expresses 

presence/absence of P300, peak values and latency values for 

each channel and task.  

The software contextually presents the same data in loco to the 

care-givers and to the patient, but does not express any formal 

diagnosis, which will be performed by the specialized 

physician.   

IV. RESULTS 

The dataset is based on recordings for ethical reason, on 12 

healthy subjects (aged between 23 and 30) acquired with a 

wireless equipment and supported by highly specialized 

medical staff. The group was selected in consideration of a 

certain degree of homogeneity in terms of age and level of 

education. Recordings were performed in a controlled 

environment. Subject were asked to perform task A, B and C 

minimizing eye movements, blinking, head and body 

movements, jaw contraction, etc. in order to reduce artifacts. 

A. P300 Spatio-Temporal Characterization  

 In the upper part of table II, the results on the complete dataset 

for each task are presented. For task A, the P300 amplitude 

range was 3 - 8 μV with a mean value of 4.7μV ± 0.61μV ; the 

P300 latency in task A was included in the range 300 – 403ms, 

with a mean value of 349.25ms ± 35.52ms. For task B, the 

amplitude mean value was 4.4μV ± 1.28μV ranging in 3- 

6.2μV; the latency range was 340-410ms and its mean value 

was 363.3ms ± 14.91ms. For task C, the mean amplitude was 

3.7μV ± 0.98μV in the 2.8-4.9μV range; the mean latency was 

378.46 ms ± 14.91ms. The average latency increases from task 

A to C was +7.7%; the average P300 peak decreases from task 
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TABLE II.  RESULTS OF T-RIDE COMPARED TO RELATED WORKS 

 

 
Fig. 5. P300 amplitude (top) and latency (bottom) evaluated using t-RIDE on 12 

subjects performing three tasks of increasing difficulty. Increasing the cognitive 
difficulty of the task, latency increases while amplitude decreases.  

 
Fig. 6. Averaged P300 (task A on Pz) of all the 12 subjects (in blue), upper 

(blue) and lower (black) bounds depicting one standard deviation.  

 

 Fig. 7. t-RIDE results for each task for 3 different subject performing good, 
typical and critical response. Clockwise, starting from the top left corner of each 

cell we present the target, not-target, FoM and latency topographies. P300 was 

P300 is more evident in the central-parietal electrodes.  

 
Fig. 8. FoM behavior with increased difficulty of the cognitive task.  

A to C was -21.28%.  P300 amplitude and latency for each 

subject performing all the tasks are reported in figure 5, which 

shows also the P300 degradation:  increasing the task 

complexity P300 amplitudes decrease while latency times 

increase, as already presented in table II. The latency increment 

from task A to C was +7.7%; the average P300 peak decrement 

from task A to C was -21.28%. In the 100% of the recordings, 

P300 had a higher amplitude in presence of the target than for 

the not-target one (average ∆V = 2.95 μV ± 1 μV on Pz). Figure 

6 shows the subject-to-subject P300 variability by averaging 12 

P300 pulses from the subjects under test on Pz during task A (in 

red). The upper and lower boundary layers depicting a standard 

deviation are shown, respectively, in blue and black. This 

analysis confirms that, for all subjects the P300 peak occurs 

around 300ms. Figure 7 shows the topographies of the 

amplitudes (for both target and not-target stimuli), latencies and 

FoM for 3 different subject performing task A, B and C. The  

results shown in the figure have been selected in order to 

highlight three different P300 responses: good response (high 

FoM, sub. no. 3), typical response (average FoM, sub no. 2) and 

critical response (low FoM, sub no. 6).  The P300 highest 

voltage levels (in the target amplitude topography) are 

concentrated in the center-parietal region (Cz, Pz, P3, P4). From 

the latency topography it is shown that the P300 is detected 

from the lateral mid-line electrodes (200-250ms on P3 and P4) 

and the central electrodes (Fz, Cz, Pz) 300-400 ms after 

stimulus. The FoM analysis allows characterizing the subject 

from both amplitude and latency at the same time. The highest 

values of FoM are recorded in the parietal cortex (Pz, P3, P4, 

P7 and P8).  As shown in Fig. 8, the 100% of the subject showed 

FoM reduction with the increased difficulty of the task. In 

particular FoM decreases (in average) from 0.0135 μV/ms ± 

0.005 (task A) to 0.012 μV/ms ± 0.004 (task B) until 0.011 ± 

0.003 (task C).  

B. t-RIDE Results and Method Validation Respect the State of 

the Art Methods  

In Table II, reference analysis are reported. The authors in [25] 

describe that on 75 healthy subjects (age 27.17 ± 19.16, 

covering the lifespan) the P300 amplitude varies between 

2.6μV and 37.7μV with a mean value of 10.4μV, while the P300 

latency ranges from 290ms to 447ms with a mean value of 

316.5ms. Note that [25] is a review of 75 different papers, 

which implement several P300 extraction methodologies.  For 

each task and subject, the 100% of t-RIDE results were 

consistent with the reference, confirming the validity of the 

approach. By comparison between RIDE and t-RIDE results it 

is possible to observe (table II) that t-RIDE calculated P300 

peak is, in average, +0.6 µV (+12.76%) higher than the one 

calculated by RIDE. Comparing the standard deviations, t-
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Task A Task B Task C

Dataset Method Subjects P300 Peak P300 Latency 

Task A 

 

t-RIDE, 
25 Average 

targets, 8 

channels 

12, healthy 

(age 26.5 ±3.5) 

Range : 3-8 μV 

Mean : 4.7 μV 

σ : 0.61 

Range: 300-403 ms 

Mean : 349.25ms 

σ : 35.52 

Task B 

 

t-RIDE 
25 Average 

targets, 8 

channels 

12, healthy 

(age 26.5 ±3.5) 

Range : 3-6.2μV 

Mean : 4.4 μV 

σ : 1.28 

Range : 340-410ms 

Mean : 363.3ms 

σ : 14.97 

Task C 

t-RIDE 
25 Average 

targets, 8 

channels 

12, healthy 

(age 26.5 ±3.5) 

Range : 2.8-4.9 μV 

Mean : 3.7 μV 

σ : 0.98 

Range : 360-410ms 

Mean :378.46 ms 

σ : 14.91 

Related 

work 

[25] 

Mix,  
> 160 

targets 

75, healthy 

(age:  27,17± 

19.16) 

Range : 2.6-37.7 μV 

Mean: 10.4 μV 

σ : n.d. 

Range : 290-447 ms 

Mean : 316.5 ms 

σ : n.d. 

Task A 

RIDE, 
25 Average 

targets, 8 

channels 

12, healthy 

(age 26.5 ±3.5) 

Range : 2.2 - 7 μV 

Mean : 4.1 μV 

σ : 1.43 

Range: 302-387 ms 

Mean : 351.4ms  

σ : 36.13 
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RIDE performs +57.34% higher accuracy: σt-RIDE = 0.61, σRIDE 

= 1.43. Concerning latency estimation, the two methods reports 

very similar results. In figures 9, 10 and 11, a comparison 

between t-RIDE, RIDE, ICA and Grand Average (GA) is 

presented. ICA and GA are the most commonly used methods 

nowadays in specialized medical centers for P300 extraction. 

The above mentioned methods were applied on identical data 

stream (subject 1, Task A; 8 channels). In figure 9 and 10 the 

amplitude and latency were normalized according to the eq. (8): 

εn,% =  
|𝑥𝑁−∆𝑥𝑛|

𝑥𝑁
 ∙ 100;   ∆𝑥𝑛 = |𝑥𝑁−𝑥̂𝑛|              (8)  

Where xN is the P300 amplitude/latency evaluated with t-RIDE 

using a task with N = 40 target stimuli, 𝑥̂𝑛 is estimated over n 

target stimuli, with n < N. xN is  the convergence  of the method 

(steady state value), and can be used as a reference value to 

evaluate the accuracy of the calculation, when n < N targets are 

used. Notice that, under this assumption, εn is also the accuracy 

of the measurement. Figure 9 shows the convergence of P300 

amplitude achieved by  the considered methods with increasing 

the number of target stimuli within the same task. The 

amplitude has been normalized to the “steady state” value 

achieved by t-RIDE using 40 targets, according to eq. (8). 

Figure 9 shows that: 

i) t-RIDE and ICA converge to the same results for the 

amplitude with an error of 0.1%;  

ii) t-RIDE is, in average, +12.3% more accurate than RIDE 

although they exhibit the same converge trend; 

iii) The GA converge value was 67% lower than t-RIDE; 

iv) For amplitude, t-RIDE is more accurate than the 

competitors. t-RIDE showed the highest accuracy using 25 

targets: t-RIDE = 96.05%; RIDE =  78%;  ICA =  75.9%; GA = 

51.6%; 

v) t-RIDE needs less targets to reach 90% amplitude 

accuracy if compared to the existing methods. The number 

of target stimuli to reach 90% accuracy are: t-RIDE = 18; RIDE 

= 38; ICA = 30; GA = n.d. (GA never reaches 90% accuracy). 

Notice that for task A, the probability of target occurrence was 

20%. Considering 1s inter-stimulus time, a rough conversion 

between number of targets and time duration of the task can be 

done: 1 target ≈ 5s. That means, in order to extract the P300 

amplitude with a 90% accuracy, the time duration of the task 

has to be: t-RIDE = 90s; ICA = 150s; RIDE = 190s. Clearly, an 

oddball task design to be used with t-RIDE has a shorter 

duration. This heavily reduces the habit phenomenon (which 

degrades the P300), improving the comfort for the patient  

Figure 10 shows the convergence of P300 latency achieved by 

the considered methods with increasing the number of target 

stimuli within the same task. The latency has been normalized 

according to eq. (8). Figure 10 shows that: 

i) t-RIDE, ICA and RIDE converge to the same results for 

the latency; 

ii)  For latency, t-RIDE is, in average, +1% more accurate 

than RIDE +3% more accurate than ICA and although they 

exhibit the same converge trend;  

iii) The GA converge value was 12% lower than the t-RIDE; 

iv) For latency, t-RIDE needs the same number of targets to 

reach 90% accuracy if compared to ICA and RIDE: t-RIDE 

= 6; RIDE = 6; ICA = 6. The number of targets to reach 90%  

 
Fig. 9. P300 amplitude calculated using: t-RIDE (in blue) RIDE (in black), 

GA(in green), ICA (in red). The analysis is referred to identical dataset and on 

a single channel Pz.  

 
Fig. 10. P300 latency calculated using: t-RIDE(in blue) RIDE (in black), GA(in 
green), ICA (in red). The analysis is referred to identical data and on a single 

channel Pz. 

 
Fig. 11. P300 extraction from subject 1 during task A using t-RIDE (in blue) 
RIDE (in black), Grand average (in geen), ICA (in red). To simplify the plot 

only Pz is shown. 25 targets were considered. 

accuracy for latency calculation with GA is 18. t-RIDE 

analyzes the EEG channels individually: the minimum EEG 

channels for t-RIDE is 1. Contrariwise, ICA requires a great 

number of electrodes: more than 32 channels are suggested 

[15]. The minimum EEG channels for ICA is 6. t-RIDE 

adoption allows to wear a more comfortably headset since 

there is no minimum required number of channels and 90% 

accuracy is reachable even with a single channel.  

Computationally speaking, t-RIDE is 1.6 times faster than 

ICA. t-RIDE convergence is reached in 79 iteration (i.e. 1.95s) 

on a single EEG channel. With the same dataset, ICA 

convergence to the same result is reached in 216 iteration (i.e. 

3.1s) giving 80% accuracy with 28 targets.   Fig. 11 presents the 

time-domain P300 waveform on Pz calculated using the above 

mentioned methods using subject 1, task A, 25 targets.  

C.  Discussion on Cognitive Impairment Detection   

t-RIDE results of task A are compared to clinical reference 

values in table I (because the control groups defined in [26] 

were measured using a paradigm very similar to task A). Task 

B and C have been developed to demonstrate and quantify the 

P300 degradation increasing the task difficulty. However, the 

diagnosis and decision is always left to the human component 

of the m-Health service i.e. the physician, especially for critical 

situations i.e. subject 6 which performed for task A, a FoM = 

0.008 μV/ms (on the edge of the clinical groups). According to 

fig. 10 and 11, the FoM calculation by ICA or RIDE reports the 

same results but with higher number of target to reach 90% of 

accuracy (t-RIDE: 18; ICA: 30; RIDE: 38) resulting in a longer 

game/test (t-RIDE: 90s; ICA: 150s; RIDE: 190s). Furthermore, 

t-RIDE can be performed even on a single channel.  
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V. CONCLUSION 

A novel m-health solution for neuro-cognitive impairment 

monitoring based on P300 spatio-temporal characterization 

achieved by tuned Residue Iteration Decomposition (t-RIDE) 

has been presented. To the best of our knowledge, this is the 

first solution performing this kind analysis and represents a 

breakthrough in the field of cognitive diagnosis and monitoring. 

The architecture is supported by a new method for P300 

analysis which overcomes the limitations of the previous 

approaches (ICA; PCA; grand average; etc.). The developed t-

RIDE method has been here validated on a dataset of 12 

subjects performing three different cognitive tasks of increasing 

difficulty. The algorithm is very efficient: the convergence is 

reached in 79 iterations in 1.5s and its robustness has been 

tested also decreasing the number of trials taken into account. 

The m-health service proposed, allows remote monitoring of 

neuro-cognitive impairment through a ‘plug and play’ 

application, while physician customization and data collection 

are allowed by cloud bridging.  
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