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Abstract
An interface between a human brain and a computer (or any external device) can be implemented for interchanging orders 
using a brain–computer interface (BCI) system. Motor imagery (MI), which represents human intention to execute actions 
or movements, can be captured and analyzed using brain signals such as electroencephalograms (EEGs). The present study 
focuses on a synchronous control system with a BCI based on MI for robot navigation. We employ a new feature extrac-
tion technique using common spatial pattern (CSP) filtering combined with band power to form feature vectors. Linear 
discriminant analysis (LDA) is employed to classify two types of MI tasks (right hand and left hand). In addition, we have 
developed posture-dependent control architecture that translates the obtained MI into four robot motion commands: going 
forward, turning left, turning right, and stopping. The EEGs of eight healthy volunteer male subjects were recorded and 
employed to navigate a simulated robot to a goal in a virtual environment. On a predefined task, the developed BCI robot 
control system achieved its task in170 s with a collision number of 0.65, distance of 23.92 m, and successful command rate 
of 80%. Although the performance of the complete system varied from one subject to another, the robot always reached its 
final position successfully. The developed BCI robot control system yields promising results compared to manual controls.

Keywords  Brain computer interface (BCI) · Common spatial pattern (CSP) · Electroencephalogram (EEG) · Motor 
imagery · Robot navigation

1  Introduction

Brain–computer interface (BCI) systems can generally be 
classified into invasive and noninvasive models. An inva-
sive BCI captures signals inside the brain, whereas a non-
invasive BCI captures signals from outside the brain (such 
as on the scalp). Although the signals captured from invasive 
BCI systems are relatively strong, surgery is required [1]. 
An electroencephalogram (EEG) is an electrophysiological 
technique for capturing electrical activity in the brain created 
during task performance [2, 3].Several applications have 

been developed based on EEG signals, including mobile 
robot control, robotic prostheses for disabled individuals, 
the diagnosis of certain brain disorders, and entertainment.

In addition to the use of robots in industry, there is an 
increasing demand for robots in daily life, particularly for 
disabled individuals. Robots can be controlled by a healthy 
person with the help of an input device such as a mouse and 
keyboard. However, such interfaces are not useful for people 
with physical disabilities such as multiple sclerosis (MS) 
or amyotrophic lateral sclerosis (ALS) who, in most cases, 
cannot walk, use their hands and arms, or even speak. Thus, 
people with these conditions cannot effectively deliver their 
thoughts or actions to robots via conventional interfaces. 
The development of brain-controlled robots would be very 
useful in such cases. In other cases, a robot might be sent to 
specific places, particularly those inaccessible to humans, 
to take photos without any third party having knowledge of 
the robot’s orientation.

EEG signals can be divided into three categories, namely: 
event related desynchronization/event related synchroniza-
tion (ERD/ERS), P300, and steady state visually evoked 
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potential (SSVEP). These signals are based on brain elec-
trode positioning and the external stimuli of the subjects. 
The first category, (ERD/ERS-based BCI),consists of con-
trolling a robot with EEG signals recorded during mental 
task performance, e.g., motor imagery, mental arithme-
tic, and mental rotation [4].Choosing the best BCI type is 
dependent on the attempted scenario. For example, for robot 
navigation in an environment in which landmarks are stored 
in its memory, either the P300 or the SSVEP approaches can 
be used only when necessary. This allows the user to choose 
a desired landmark and let the robot use its autonomous sys-
tem to reach the landmark. If the environment is unknown or 
the robot encounters unexpected obstacles, motor imagery is 
preferable for direct control of robot steering.

Several studies related to EEG-based BCI systems such 
as SSVEP [5, 6], P300 [7], and ERD/EDS [8, 9] focus 
on mobile robot control. In addition, several studies have 
employed BCIs for robotic arm control with ERD/ERS and 
SSVEP brain signals [10, 11].The system developed by 
Pfurtscheller et al. [12] combines ERD/ERS and SSVEP 
BCIs to control an electrical hand prosthesis.

The appropriate analysis and processing (filtering, fea-
ture extraction and classification) of MI states can generate 
accurate commands for control. Many useful techniques can 
extract features from EEG signals, such as common spatial 
pattern (CSP) [8, 9, 13], wavelet transform (WT) [13, 14], 
fast Fourier transform (FFT) [15, 16], and logarithmic band 
power (LBP) [17–19]. In this study, we propose a novel 
feature extraction technique using CSP. Rather than using 
variance, we propose to employ LBP to form feature vectors. 
Linear discriminant analysis (LDA) is employed for the clas-
sification of two types of MI tasks (right hand and left hand).

In this study, a BCI system based on MI was developed 
to allow 2D direct control of robot motions in an unknown 
environment. Figure 1 shows the proposed system for mobile 
robot control. The overall system is divided into two sub-
systems: the first is the BCI system, and the second is the 
robot control system. The BCI system acquires EEG sig-
nals from a human brain and classifies them into two user 
mental states, left-hand and right-hand motor imagery. The 

robot control system provides four low-level motion com-
mands, “going forward,” “turning left,” “turning right,” and 
“stopping.” These commands are generated using a posture-
dependent control paradigm that receives classification out-
puts or directional commands (left and right) as input. The 
performance of the developed system is evaluated at three 
levels. The first level includes an evaluation of the BCI sys-
tem. At the second level, we evaluate the performance of 
the posture-dependent state controller. The third level of 
evaluation is applied to the complete system, including robot 
simulation. Further details about the overall system and its 
performance are presented in ensuing sections.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the EEG recording process and briefly 
explains the proposed methods, including preprocessing, 
feature extraction, classification, the control unit, and a 
simulated robot as well as evaluation methods. The study 
results and a discussion are provided in Sect. 3. Finally, the 
paper is concluded in Sect. 4.

2 � Method

2.1 � Subjects

The eight male subjects used in this experiment were 
healthy, right-handed, and between 29 and 32 years of 
age. The subjects were asked not to eat or drink for at least 
60 min prior to the experiment. None of the subjects had pre-
vious BCI experience. Before the experiment commenced, 
the procedures and objects of the experiment were explained 
to the subjects. Written informed consent was obtained from 
all the participants involved in the study for both their par-
ticipation and the publication of any accompanying data 
(including the figures in this paper).

2.2 � Data Recording

We performed EEG recording of the subjects using the 
g.tech software and hardware package [20] in a research 

Fig. 1   Proposed system archi-
tecture of mobile robot control 
system by BCI based on MI
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laboratory at King Saud University, Saudi Arabia. Figure 2 
shows our EEG data acquisition setup. The data acquisition 
setup includes the following: g.Gamma cap2 with 64 active 
EEG electrodes, g.Scarabeo, electrode driver (terminal), 
multichannel signal amplifier g.HIamp, and g.Recorder soft-
ware (as shown in Figs. 2, 3). In accordance with the inter-
national 10–20 system [21], the EEG data were recorded 
using a 64-channel EEG. The right ear lobe was used as a 
reference while the forehead (Fz) was used as ground. All 
the signals from the channels were amplified, sampled at a 
frequency of 256 Hz, and filtered at 0.5–100 Hz using a But-
terworth filter. To suppress line noise, a 60 Hz notch filter 
was employed. All impedances were kept below 30 kΩ. The 
signals recorded had a duration of at least 35 min for each 
subject. The total duration of preparation and electrode setup 
was 20–40 min.

2.3 � Experimental Paradigm

The subjects sat in a comfortable chair one meter away 
from a computer screen. A short acoustic warning tone 
with a fixation cross was shown on the black screen at 

the beginning of each trial (t = 0 s). This tone signaled 
the subject that the trial had started. At the third second 
(t = 3 s), a sign in the form of an arrow was presented on 
the screen until t = 7 s. This arrow faced either left or right, 
asking the subject to achieve a desired task (imagine the 
movement of the left hand if the left arrow appears or 
imagine the movement of the right hand if the right arrow 
appears) until the fixation cross and arrow disappeared 
at t = 7 s. No feedback was provided during task perfor-
mance. After performing the task, the screen returned to 
black for 2–4 s, providing a random short break. After the 
break, the cross with acoustic stimulus appeared, signal-
ing the next trial. Each cue (left arrow or right arrow) 
was shown 12 times, in a randomized order, within each 
run. Each subject completed five runs, and the paradigm is 
illustrated in Fig. 4. At the conclusion of the experiment, 
each subject had completed 120 trials of motor imagery 
(60 right-hand and 60 left-hand) with three files. The first 
file consists of recorded EEG signals (including 120 trials 
with break signals). The labels of the trials (right hand or 
left hand) are included in the second file. The third file 
contains the time points of the 120 cues.

Fig. 2   Our EEG data acquisi-
tion setup 64-channel 

Scalp EEG 
Electrode Driver 

Box 
Signal Amplifier 
& Conditioning 

Software to 
record the data 

Stimulus 
interface 

Fig. 3   g.GAMMAcap2 with 
g.SCARABEO electrodes 
(left), driver box (middle), and 
g.HIamp (right) [19]
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2.4 � Signal Preprocessing

Before filtering, the EEG data were segmented into E-matri-
ces with a size of ch × T for each trial, where T indicates 
the number of samples per channel during a specific time 
interval, and ch specifies the number of channels. In our 
experiment, time intervals of 2 s with offsets of 0.0 s were 
applied for all subjects per trial. During signal recording, 
the subjects were asked to perform the motor imagery task 
for 4 s to enable greater flexibility for finding the optimal 
time interval and offset. Because robot control is a real time 
application, it is necessary to decrease the time required to 
instruct the robot as quickly as possible without significantly 
impacting output accuracy. For this purpose, we investigated 
the optimal time interval for an EEG epoch and discovered 
an optimal time interval of 2 s, which has been previously 
confirmed [22].

The EEG signals contain artifacts resulting from the eye, 
also known as EOG artifacts [23], and/or body movements. 
These artifacts make the algorithm efficient in some states 
but inefficient in others. Although the subjects were told not 
to move their eyes or blink while recording the data, they 
still generated some noise. It should be noted that we inten-
tionally performed two steps of EEG filtering. The first fil-
tering was done during recording and is intended to remove 
noise, artifacts and other unnecessary signals. A frequency 
band of 0.5 - 100 Hz is most commonly used during EEG 
recording to obtain a wide frequency spectrum for further 
analysis and investigation. The second filtering was largely 
intended to capture a region or frequency of interest. For 
motor imagery application, the most useful frequency range 
is in the alpha–beta band. Thus, in order to extract important 
information, we used a bandpass Butterworth filter of order 
5 with a frequency band of 8–34 Hz during preprocessing.

2.5 � Feature Extraction using CSP

Several types of feature extraction techniques can be employed 
for two-class imagery task discrimination. In this experi-
ment, we employed the most popular method, CSP based on 
variance. We used CSP-based logarithmic band power and 
employed a CSP algorithm as a spatial filter that leads to peak 
variances for the discrimination of two classes (left-hand and 

right-hand motor imagery) and to reduce the number of chan-
nels used [24]. Computing the projection matrix constructs a 
set of common spatial pattern filters. The algorithm starts by 
computing the normalized spatial co-variance for both classes. 
This is achieved by the following equation,

where ER and EL denote a single trial under two conditions 
(right hand and left hand) of size ch × , where E′ is the trans-
pose of E, and trace(EE′) is the sum of the diagonal elements 
of EE′.Calculating the average over all the trials of each class 
produces c ̅R and c ̅L, the averaged normalized covariances. 
For our data, both c ̅R and c ̅L are on the order of 62 × 62. The 
total composite spatial co-variance is then obtained by

This is factorized into the eigenvectors matrix UC and the 
diagonal matrix of eigenvalues λC such that

After arranging the eigenvalues in descending order, the 
whitening transformation P is computed as follows:

Subsequently, we must find 

To test these calculations, the sum of the corresponding 
eigenvalues of SR and SL should be the identity matrix, and 
SR and SL should have the same eigenvectors such that

where B is any orthonormal matrix that satisfies

The smallest eigenvalues with the corresponding eigenvec-
tors for SL have the largest eigenvalues for SR, and vice versa. 
This is an indicator that the eigenvalues for one class are 
minimized while the eigenvalues for the other class are max-
imized at that same point. Thus, the co-variance between the 
two classes is successfully maximized. A set of common 
spatial pattern filters (projection matrix) can be obtained as

2.6 � Feature Extraction and Channel Selection

From the previous section and Eq. (10), we have
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Fig. 4   Timing scheme of the experimental paradigm
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where �1 ≥ �2 ≥ ... ≥ �ch . Therefore, the first CSP filter w1 
provides the maximum variance of class 1, and the last CSP 
filter wch provides the maximum variance of class 2. For 
dimensionality reduction, only the first and last m filters 
should be used, such that

and the filtered signal S(t)is given by

where d is the reduction number and is equal to 2 × m. 
The reduction number is the number by which the chan-
nels should be reduced. Thus, for each class’s EEG sam-
ple matrix, we only select the small number of signals (m) 
which are most important for discriminating between the two 
classes. Finally, the feature vectors f =

(
f1, f2, f3,… , f2m

)� 
can be calculated by the following equation:

The CSP-variance method for left- and right-hand MI 
tasks did not provide peak variances [25, 26] as expected 
for discriminating the two classes. This made the features 
of left- and right-hand MI tasks proximal to each other, as 
shown in the upcoming results section. Thus, in order to 
separate these features and redistribute them, we propose to 
extract new features using logarithmic band power (LBP) 
rather than variance. The new features are extracted as 
follows: 

Band power is a commonly used method in EEG analysis 
for estimating the power of EEG signals [27, 28]. In this 
study, we apply the band power method on the signals fil-
tered with the WCsp filter. In other words, we perform con-
ventional CSP but replace variance with band power. The 
variance is defined by 1

N

∑N

n=1

�
si(t) − �i

�2
, which is similar 

to Eq. (15) if the mean value is ignored. We also retain the 
use of logarithmic operation as normally used in the CSP-
variance method. This modification redistributes the features 
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of left- and right-hand MI tasks for easy classification. As 
a result of CSP-LBP, d features were obtained. In our work, 
we selected just the first and last filters (m = 1); hence, the 
size of our feature vector is 2.

2.7 � Classification and Cross‑Validation

In this study, we employed linear discriminant analysis 
(LDA), a well-known binary classification method based 
on mean vectors and covariance matrices of feature vectors 
for individual classes. Linear discriminant analysis uses a 
hyperplane to distinguish between classes, minimizing the 
variance within a class and maximizing the variance between 
classes [29]. The LDA classifier is explained as follows.

Let the input feature vectors f 1, f , f 3,… , f n be defined 
for training, where f i = [f1f2...fd] . n1 is the group of vec-
tors created from Class 1, and n2is the group of vectors cre-
ated from Class 2. LDA is based on the transformation of a 
d-dimensional vector f to the scalar z,

Using LDA, the task is to obtain an optimal projection w 
in d-dimensional space so that the distribution of z is easy 
to discriminate. This is achieved as follows:

where �1 and C1 are the mean vector and covariance matrix, 
respectively, for Class 1,and �2 and C2 are the mean vector 
and covariance matrix, respectively, for Class 2. The weight 
vector can then be given by

and the output of the classifier is

where x is an unknown vector (new sample) classified 
according to its feature position with respect to the separat-
ing line in the space.

We employed k-fold cross validation to estimate our clas-
sification accuracy as follows. The complete dataset was 
randomly partitioned into k equal subsets. One subset was 
employed for validation (test), and all the other subsets were 
employed for training to produce an initial classification 
accuracy. This operation was then repeated k times (fold). 
The subset employed for validation was different each time. 
After completing all the operations, a single classification 
accuracy was found by calculating the average value over 
all the obtained classification accuracies [30]. The classifier 
module was given the extracted features of 120 trials, and 
we applied 5-fold cross validation. Therefore, each training 

(16)z = wT f

(17)W =

[
�2 − �1

C1 − C2

]T

(18)b =
W

2

(
�1 + �2

)

(19)a = xW − b
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set included 96 trials (80%) and each testing set included 
24 trials (20%). The classification accuracy can be given by

where Ncorrect is the number of correctly classified vectors, 
and Ntotal is the overall number of vectors.

Figure 5 shows a block diagram of our proposed approach 
for signal processing. First, the EEG signal is segmented 
into time windows of 2 s. Second, the output of the segmen-
tation process is fed to an 8–34 Hz Butterworth bandpass 
filter. Next, the CSP algorithm with a reduction number 
(d) of 2 is applied to the filtered signals. Then, rather than 
using variance, LBP is applied to the CSP feature to form 
the featurevectors. Finally, LDA is employed as a classifier 
to discriminate between the two classes (right-hand and left-
hand MIs). The method was implemented using MATLAB 
R2013b on a Windows 8 PC with an Intel i3 Core, 2.30 GHz 
processor.

2.8 � Control Unit

After the classification process, the control unit translates the 
obtained categories into robot motion commands, as shown 
in Fig. 6. These motion commands are then fed to a simu-
lated robot. In our study, we developed a posture-dependent 
control architecture that translates the obtained categories 
(classification output: right hand and left hand) to four motion 
robot commands (“going forward,” “turning left,” “turning 
right,” or “stopping”), as shown in Fig. 7. First, the obtained 
categories are mapped into two-directional commands (left 
or right). Then, these directional commands are mapped into 
four low-level motions to navigate the robot to the destina-
tion (target position) using the developed posture-dependent 
control paradigm. In this paradigm, low-level commands are 
issued depending on the postural state of the robot. Figure 7 
shows a state-machine diagram of the proposed paradigm. 
For maintaining stability, the robot was developed to prevent 
it from walking while turning left or right. While the robot 
remains in the “stopping” state, a “left” directional command 
forces the robot goes into a “no change” state until a “left” 
or “right” directional command is received. If a “left” (or 
“right”) directional command is received, the robot continu-
ously turns to the left (or to the right) until a “left” or “right” 

(20)accuracy =

(
Ncorrect

Ntotal

)

× 100%

directional command is detected again. If a “left” directional 
command is detected, the robot stops turning. However, if a 
“right” directional command is detected, the robot walks con-
tinuously forward in the direction it is facing. Finally, while 
the robot remains in a “going forward” state, a “left” or “right” 
directional command forces the robot to stop (i.e., go into a 
“stopping” state). In other words, a “left” or “right” directional 
command stops the robot if it is walking forward, while only 
a “left” directional command stops the robot if it is turning 
left or right. Table 1 shows the robot motions based on our 
posture-dependent control architecture.

2.9 � Simulated Robot and Environment

The MobileSim software for simulating mobile robots (Omron 
Adept MobileRobots) was employed as a software platform in 

Segmentation 
(2 s) 

Butterworth 
Bandpass 

Filter  
(8–34Hz) 

CSP 
 Feature 

(d=2) 
Logarithmic 

Band Power /
Variance 

LDA 

Classification Feature Extraction Preprocessing 

L R 

Fig. 5   Block diagram of proposed approach for signal processing

Fig. 6   Converting the two-directional commands (right and left) into 
four low-level robot motions

Fig. 7   Proposed posture-dependent control architecture
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our study. As previously mentioned, our control system sends 
low-level motion commands to a simulated robot according 
to the proposed posture-dependent control architecture shown 
in Fig. 7 and discussed in the previous section. C code was 
developed to control the behavior and speed of the robot. The 
robot’s rotating speed was set to 22 s/360° (0.28 rad/sec), and 
its movement speed was set to 0.5 m/s. We employed Mapper3 
software to develop the robot’s operating environment and 
place obstacles such as walls (Omron Adept MobileRobots). 
Figure 8 illustrates the virtual environment map employed in 
our experiment with a screen image of a successful naviga-
tion attempt by the simulated robot. The converted real size 
of the virtual environment is 15 × 7 m2. The environment is 
divided into three 5 × 7 m2rooms. Each attempt initiates with 
the robot at the starting point (Start) and terminates when the 
robot reaches its destination point (Goal). The relative size of 
the target is 5 × 1 m2. The robot stops moving forward or rotat-
ing if it crashes into any of the prevent walls.

2.10 � Evaluation

2.10.1 � Performance of the BCI System

The BCI system’s performance was evaluated in terms of 
classification accuracy, the ratio of correctly classified trials 
to total trials executed by each subject [30]. This measures 

how well the BCI system differentiates between the imple-
mented mental tasks. In this study, there are two mental 
tasks (right hand and left hand) for differentiation. High 
classification accuracy leads to sound performance for the 
complete mobile robot control system, which is based on the 
BCI system. In this evaluation, all the classification accura-
cies were calculated by fivefold cross validation as explained 
previously. The extracted feature vectors of 120 trials were 
sent to the classifier module (LDA). The training set com-
prises 96 trials (80%) and the testing set comprises 24 trials 
(20%). The classification accuracy can be given by Eq. (20).

2.10.2 � Performance of the Posture‑Dependent State 
Architecture

The commands issued from the posture-dependent state 
architecture can be correct or incorrect dependent on a tri-
al’s classification results. Any produced command includes 
at least one trial. For example, to make the robot turn to 
the right, two correctly classified trials (left and right) are 
required. If the first trial is classified as “left hand,” and 
the second trial is classified as “right hand,” the issued 
command will be “turning right,” which is a successful 
command. However, if the first trial is classified as “left 
hand,” but the second trial is also classified as “left hand,” 
the issued command will be “turning left,” which is an 
unsuccessful command. Similarly, if the first trial is classi-
fied as “right hand,” the issued command will be “walking 
forward,” which only requires one trial, right hand. This is 
also an unsuccessful command. The posture-dependent state 
architecture was developed to avoid certain misclassifica-
tions. For example, for the robot to stop walking when it is 
walking forward, either a “left” or “right” directional com-
mand is required. To ensure a reliable evaluation, the aver-
age successful command rate was calculated over 100 runs 
for each command (“going forward,” “turning left,” “turning 
right,” and “stopping”).

2.10.3 � Navigation Performance

The task in a single attempt is as follows. From the starting 
point, the robot should be navigated to its destination with-
out hitting any walls. Due to certain limitations, the robot 
was navigated offline by the EEG signals of the eight sub-
jects. Each trial (right hand or left hand) to be issued was 
randomly chosen from a list of trials (trials file) and fed to 
the BCI system for signal processing. To evaluate the com-
plete system, the robot’s navigation performance was meas-
ured in terms of several metrics per attempt. The first metric 
is task time, the total time required by the robot to achieve its 
task (in seconds). The second metric is the distance traveled 
by the robot to reach to its destination (in centimeters). The 
third metric is the number of collisions that the robot had 

Table 1   Motion outputs based on our posture-dependent control 
architecture

Output motion Last state Required Imagination

Going forward Stopping Right hand
Turning left Right hand
Turning right Right hand

Turning left No change Left hand
Turning right No change Right hand
No change Stopping Left hand
Stopping Going forward Left/right

Turning left Left hand
Turning right Left hand

Fig. 8   The path to be tracked by the simulated robot in one attempt
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with walls. The number of total commands required for the 
robot to reach its destination is considered as well. For each 
subject, the robot’s attempt was repeated twenty times, and 
the average was taken for the metric calculations. To enable 
a comparison with BCI performance, these metrics were also 
calculated for manual control.

3 � Results and Discussion

3.1 � Performance of the BCI system

Table 2 provides the evaluated systems’ classification accu-
racy for each of the eight subjects, based on LDA, for clas-
sifying two classes of EEG-related right-hand and left-hand 
MI. The table shows that using CSP-LBP produced better 
results than those obtained from CSP-variance with an aver-
age classification accuracy of 76.46% over the eight subjects. 
This improvement was clear with all subjects except hsm 
and ysf. This demonstrates the effectiveness of the proposed 
method (CSP-LBP) compared to the conventional CSP-
variance method. To complement our quantitative analysis, 
we also performed a qualitative analysis by visualizing the 
extracted features in 2D plots. Figure 9 shows a 2D plot of 
100 feature vectors randomly selected from all subjects at 

the 8–34 Hz frequency band for the two approaches. The 
figure shows that our method redistributes the left- and 
right-hand features in a manner that enables straight for-
ward classification.

3.2 � Performance of the Posture‑Dependent State 
Architecture

A low-level command issued from the posture-dependent 
state architecture can either be successful or unsuccessful. 
This depends on the classification results of the trials and 
whether a trial is correctly or incorrectly classified. In the 
mapping step, a trial classified as right hand will be mapped 
as a “right” directional command. Similarly, a trial classified 
as left hand will be mapped as a “left” directional command. 
Each low-level command requires at least one trial (one 
directional command). To ensure a reliable evaluation, the 
average number of successful commands for all the subjects 
was calculated over 100 runs for each command. Table 3 
details the required and issued commands of the first subject 
(akm). We use this subject to provide a detailed explanation 
of the posture-dependent state controller evaluation. Table 3 
shows the successful command rate for each command, as 
well as the average successful command rate. The 100 runs 
were divided into groups according to the likely last state for 
each required command.

For example, to make the robot go forward, 100 runs, 
divided into three groups based on the likely last state (stop-
ping, turning left, or turning right), were issued by EEGs 
of subject akm. The results of the obtained commands are 
distributed as follows: 90 runs (31 + 28 + 31) were translated 
as “going forward” commands, 3 runs were translated as 
the “no change” state, and 7 runs were translated as “stop-
ping” commands. Thus, out of 100 required commands, 90 
commands were translated as successful commands while 
10 commands were translated as unsuccessful commands, 
resulting in a successful command rate of 90%. The identi-
cal steps were performed for the remaining commands, and 
the successful command rates were 56, 75, and 91% for the 
“turning left,” “turning right,” and “stopping” commands, 
respectively.

The required and issued commands and successful com-
mand rates of all the subjects are summarized in Table 4. 

Table 2   Classification accuracies of eight subjects

Subjects Feature extraction method

CSP + Variance CSP + Loga-
rithmic band 
power

Trial No. 120 120
akm 80.00 81.67
khl 75.83 78.33
mjd 77.50 78.33
mhd 80.00 81.67
hsm 68.33 67.50
abm 85.00 87.50
ysf 73.33 72.50
khd 61.67 64.17
Avg. 75.21 76.46

Fig. 9   2D plot of randomly 
selected feature vectors from all 
subjects at 8–34 Hz frequency 
band using (a) CSP + variance 
and (b) CSP + logarithmic band 
power
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The table shows promising results, particularly for subjects 
such as abm, who presented a successful command rate of 
83.75%. However, low success rates are associated with 
some of the subjects. As mentioned earlier, the results are 
directly affected by the classification accuracy of the BCI 
system. This is clearly apparent for the “turning left” and 
“turning right” commands. Because the commands “turn-
ing left” and “turning right” require two correctly classified 
trials (left and right), they are more likely to be incorrectly 
translated than other commands. For example, to make the 
robot turn to the right, two consecutive trials (left and right) 
must be classified correctly. If at least one trial is classified 
incorrectly, the command will be translated as an unsuc-
cessful command. To avoid this problem, we programmed 
the robot as follows. If the robot receives a “turning left” 
command, the robot will continuously turn to the left until 
it is “stopping” or “going forward” in the required direction. 
Similarly, if the robot receives a “turning right” command, 
it will continuously turn to the right until a “stopping” or 
“going forward” command is received. For example, to make 
the robot turn to the right, two correctly classified trials (left 
and right) are required. If the first trial is classified as “left 
hand” while the second trial is classified as “right hand,” the 

issued command will be “turning right,” and the robot will 
continuously turn to the right until a “stopping” or “going 
forward” command is received. However, if the first trial is 
classified as “left hand” and the second trial is also classified 
as “left hand,” the issued command will be “turning left,” 
and the robot will continuously turn to the left until a “stop-
ping” or “going forward” command is received. Turning left 
or right does not change the tracked path of the robot as 
long as it continues to go in the required direction. Turning 
left rather than turning right simply increases the task time. 
However, if the first trial is classified as “right hand,” the 
issued command will be “going forward.” This erroneous 
command will change the path tracked by the robot. Table 5 
shows the new successful command rates achieved after 
implementing this improved strategy. The highest and low-
est successful command rates are 90% and 71.67%, respec-
tively. The average successful command rate increased from 
71.41% to 80.92% over all the subjects.

3.3 � Navigation Performance

Figure 10 shows the path to be tracked and sequential snap-
shots of the simulated robot’s navigation for a single attempt 

Table 3   Details of required and 
issued commands of subject 
akm 

Required commands Last state (no. of 
trials)

Issued commands Successful commands rate

GF TL TR NCH SP

Going forward (GF) Stopping (34 trials) 31 0 0 3 0 90.00%
TL (33 trials) 28 0 0 0 5
TR (33 trials) 31 0 0 0 2

No change (NCH) Stopping (100 
trials)

22 0 0 78 0 78.00%

Turning left (TL) NCH (100 trials) 0 72 28 0 0 72 × 0.78 = 56.16%
Turning right (TR) NCH (100 trials) 0 4 96 0 0 96 × 0.78 = 74.88%
Stopping (SP) GF(50 trials) 0 0 0 0 50 91.00%

TL (25 trials) 4 0 0 0 21
TR (25 trials) 5 0 0 0 20

Average 78.00%

Table 4   Successful command 
rates of all subjects

Subjects Issued commands Average (%)

Walking forward Turning left Turning right Stopping

akm 90 56 75 90 78.00
khl 73 56 57 90 69.00
mjd 82 59 53 91 71.25
mhd 91 69 70 89 79.75
hsm 82 43 42 77 61.00
abm 80 82 77 96 83.75
ysf 72 60 48 86 66.50
khd 63 58 43 84 62.00
Average 79.13% 60.38% 58.13% 87.88 71.41%
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(one navigation task). During a single attempt, the task time, 
distance traveled, and number of collisions were measured. 
Additionally, the number of total issued commands and suc-
cessful command rate were calculated. These performance 
metrics from the BCI experiments were averaged over 20 
attempts for each subject. As an illustrative example, we 
show the navigation results of the first subject, akm, in detail. 
Figure 11 shows the traces of 20 navigation attempts by 
EEGs of subject akm using the simulated robot, initiating 
at the starting position and ending at the destination. The 
robot’s collisions are indicated with bold red marks. Table 6 
summarizes the performance metrics of subject akm. The 
average performance metrics are as follows. The average 
collision number over 20 attempts is 0.3, and the average 
distance traveled is 23.69 m. The average time required by 
the robot to reach its destination is 130 s, the average num-
ber of issued commands is 17.9, and the average number of 
unsuccessful commands is 2.45. However, in all attempts, 
the robot successfully reached its destination.

Table 7 summarizes the navigation performance metrics 
of all subjects. The performance metric results vary from one 
subject to another. However, in all attempts, the robot suc-
cessfully reached its destination. As shown in the table, sub-
ject abm presented the highest performance with a relatively 
lower number of collisions, shorter task time, shorter dis-
tance travelled, and fewer issued commands. This is because 
abm tended to have the highest classification accuracy and 
successful command rate (see Tables 2,  5). In contrast, sub-
jects hsm and khd exhibited the poorest performance due to 
their lowest classification accuracy and successful command 
rates. Because the left-hand MI is responsible for turning 
the robot left or right (see Fig. 7), its incorrect classification 
forces the robot to go forward, which may lead to collisions 
and increased travel distance. The results of subjects hsm 
and khd verify this claim. Similarly, because right-hand MI 
is responsible for going forward, its incorrect classification 

forces the robot to turn left or right, causing an increase in 
the task time required to reach its destination. The results of 
subject khd verify this claim. Higher classification accuracy 
leads to a lower number of required commands for reaching 
the destination with a lower number of unsuccessful com-
mands. This becomes clear in mapping the obtained results 
in Table 2 with the results in Table 7. The performance 
metrics are averaged over all the subjects and shown in the 
last row of Table 7. Overall, higher classification accuracy 
with a well-developed postural-dependent control paradigm 
leads to sound performance, i.e., relatively fewer collisions, 
shorter task time, shorter distance travelled, and fewer issued 
commands. This is verified by the comprehensive results in 
Table 7.

For comparison with BCI control, the aforementioned 
metrics were calculated and averaged over five attempts 
using manual control. The averaged results of the navigation 
experiments based on BCI and manual control are shown in 
Table 8. During the manual control attempts, the robot was 
navigated through the same track (see Fig. 8) and achieved 
a distance traveled of 23.24 m without collisions. However, 
during the BCI control attempts, the robot travelled 23.92 m 
with an average of 0.65 collisions. The average task time was 
85 s under manual control, and 170.1 s under BCI control. 
This is because, but not limited to, the fact that at least two 
seconds were required to process the mental task (imagina-
tion of right- or left-hand movement). Another reason for 
the increased task time under BCI control is classification 
errors. Thus, more commands are required to complete the 
task (reaching the destination), increasing the task time. 
Classification errors also increase the collision number and 
distance travelled. The practical successful command rate 
for manual control is 100% whereas that of BCI control 
is 79.3%, which is close to the theoretical value shown in 
Table 5. However, the robot always successfully reaches its 
final position (the success rate under BCI control is 100%).

4 � Conclusion

This study describes a synchronous control system called 
BCI using two mental tasks (left-hand and right-hand motor 
imagery) for robot navigation in an unknown environment. 
We employ CSP with logarithmic band power instead of var-
iance to form feature vectors. Linear discriminant analysis 
(LDA) is employed for classification. We developed a pos-
ture-dependent control architecture with four motion robot 
commands (“going forward,” “turning left,” “turning right,” 
and “stopping”) to translate acquired categories (right hand 
and left hand) into robot motion commands. The EEGs of 
eight healthy volunteer male subjects navigated a simulated 
robot to reach a destination point in a virtual environment.

Table 5   Successful command rates of all subjects after improvement

Subjects Issued commands Average (%)

Walking forward Turning 
left or 
right

Stopping

akm 90 80 90 86.67
khl 73 77 90 80.00
mjd 82 82 91 85.00
mhd 91 78 89 86.00
hsm 82 56 77 71.67
abm 80 94 96 90.00
ysf 72 71 86 76.33
khd 63 68 84 71.67
Average 79.13% 75.75 87.88 80.92
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Fig. 10   Screen shots of the navigation of the simulated robot in one 
trial (a) Robot started at the starting position with the “stopping” 
state. (b) Robot was going forward after receiving “going forward” 
command, and then stopped after receiving “stopping” command (c) 
Robot was turning to the left after receiving“turning left” command. 
(d) Robot was going forward and then stopped again. (e) Robot was 

again turning to the left. (f) Robot again was going forward and then 
stopped. (g) Robot was turning to the right after receiving “turning 
right” command. (h) Robot again started to walk forward and then 
stopped. (i) Robot turned to the right. (j) Robot again started to walk 
forward and then stopped at the destination
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Fig. 11   Traces of twenty attempts during navigations of subject akm using the simulated robot starting from the starting position until reaching 
the destination. The collisions are indicated using bold red marker
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We evaluated the proposed system on three levels. The 
proposed feature extraction and classification methods were 
evaluated with a classification accuracy metric, while the 
developed posture-dependent control architecture was evalu-
ated using a successful command rate metric. The perfor-
mance of the overall system was validated along with that 
of the simulated robot on a predefined task using task time, 
distance travelled, number of collisions, and other metrics. 
Based on the average classification accuracy over all the 
subjects, CSP achieved better performance using LBP than 

Table 6   Navigation 
performance metrics of subject 
akm with 20 attempts

Total com-
mands (times)

Successful com-
mands (times)

Unsuccess-
ful commands 
(times)

Time (s) Distance 
travelled (m)

Colli-
sions 
(times)

Attempt#1 15 14 1 93 20.14 0
Attempt#2 17 15 2 122 22.79 0
Attempt#3 14 14 0 90 22.42 0
Attempt#4 15 14 1 99 22.32 0
Attempt#5 14 14 0 104 24.10 0
Attempt#6 15 14 1 125 24.35 0
Attempt#7 15 14 1 113 23.15 0
Attempt#8 17 15 2 120 25.73 1
Attempt#9 16 15 1 119 24.11 0
Attempt#10 14 14 0 100 22.46 0
Attempt#11 14 14 0 110 23.71 0
Attempt#12 25 24 1 213 26.85 1
Attempt#13 24 18 6 171 23.22 0
Attempt#14 26 19 7 192 26.89 0
Attempt#15 20 23 7 169 22.87 1
Attempt#16 20 21 9 180 24.96 1
Attempt#17 19 16 3 118 24.26 0
Attempt#18 22 18 4 114 23.70 1
Attempt#19 22 19 3 160 24.26 1
Attempt#20 14 14 0 89 21.52 0
Average 17.9 16.45 2.45 130.05 23.69 0.3

Table 7   Averaged navigation 
performance metrics of all 
subjects

Subjects Total com-
mands 
(times)

Successful com-
mands (times)

Non-successful 
commands (times)

Task time (s) Distance 
travelled 
(m)

Collisions 
(times)

akm 17.9 16.45 2.45 130.05 23.6905 0.3
khl 24.6 19.25 5.35 177.45 23.8675 0.65
mjd 20.75 17.55 4.2 146.95 23.701 0.65
mhd 17.5 15.95 1.55 119.35 23.175 0.4
hsm 34.7 25.35 9.35 207.55 25.755 1.3
abm 17.35 15.8 1.65 113.2 21.9375 0.3
ysf 24.95 19.4 5.55 176.65 24.41 0.65
khd 36.7 24.45 12.25 289.6 24.8055 0.95
Average 24.31 19.28 5.29 170.10 23.92 0.65

Table 8   Averaged navigation performance metrics based on BCI and 
manual control

BCI Manual

Collisions (times) 0.65 0
Distance travelled (m) 23.92 23.24
Task time (s) 170.10 85.00
Total commands (times) 24.31 14
Successful commands (times) 19.28 14
Successful commands rate 79.3% 100%
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variance. The developed posture-dependent architecture 
achieves a successful command rate of ~ 80%, which is 
sufficient for navigating a robot with relatively few errors. 
Although the performance varies from subject to subject, the 
robot always successfully reaches its final position (achieves 
a 100% success rate). Finally, the developed mobile robot 
control system using BCI yielded promising results com-
pared to manual controls. Future research directions include 
testing the proposed method using an actual robot instead 
of a simulated one. Moreover, we plan to consider an online 
approach in future work.
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