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Abstract: Conventional therapies do not provide paralyzed
patients with closed-loop sensorimotor integration for
motor rehabilitation. This work presents the recoveriX sys-
tem, a hardware and software platform that combines a
motor imagery (MI)-based brain-computer interface (BCI),
functional electrical stimulation (FES), and visual feedback
technologies for a complete sensorimotor closed-loop ther-
apy system for poststroke rehabilitation. The proposed sys-
tem was tested on two chronic stroke patients in a clinical
environment. The patients were instructed to imagine the
movement of either the left or right hand in random order.
During these two MI tasks, two types of feedback were pro-
vided: a bar extending to the left or right side of a monitor

as visual feedback and passive hand opening stimulated
from FES as proprioceptive feedback. Both types of feed-
back relied on the BCI classification result achieved using
common spatial patterns and a linear discriminant analysis
classifier. After 10 sessions of recoveriX training, one
patient partially regained control of wrist extension in her
paretic wrist and the other patient increased the range of
middle finger movement by 1 cm. A controlled group study
is planned with a new version of the recoveriX system,
which will have several improvements. Key Words:
Brain-computer interface—stroke rehabilitation func-
tional electrical stimulation neurofeedback.

In conventional rehabilitation therapy, patients
are often asked to try to move the paretic limb, or
imagine its movement, while a functional electrical
stimulator (FES), physiotherapist, or robotic device
helps them perform the desired movement. In con-
ventional therapy, the feedback is often provided
when the users are not performing the required
mental activity. There is no objective way to deter-
mine whether patients who cannot move are actively
performing the desired motor imagery (MI) task and
thus producing the concordant neural activation.
Today, BCI technology can provide an objective
tool for measuring MI, creating new possibilities for
“closed-loop” feedback. Because the closed-loop
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feedback is linked with the desired mental activity, it
is very important for as every feedback system made
possible through MI-based BCI could significantly
improve rehabilitation therapy outcomes.

This concurrent sensory feedback with motor
intention is an important factor for motor recovery
(1,2). Neural networks are strengthened when the
presynaptic and postsynaptic neurons are both active.
In conventional therapy, when patients receive feed-
back while they are not performing MI, these two
neuronal populations are not simultaneously active.
This dissociation between motor commands and sen-
sory feedback may explain why the therapy does not
significantly induce the reorganization of the
patients’ brains around their lesioned area. Nonsi-
multaneous, dissociated feedback cannot lead to
Hebbian learning between two neuronal populations,
which underlies the desired improvements from
rehabilitation. Thus, conventional therapy may some-
times fail because it relies on open-loop feedback.
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To complete the feedback loop for paralyzed
patients, our system uses visual feedback and FES-
induced movements based on their MI (3-5).
Research using FES in poststroke patient rehabili-
tation showed a statistically significant recovery of
muscle strength after the therapy (6). FES has also
been used for restoring hand grasp and release in
people with tetraplegia, and standing and stepping
in people with paraplegia (7).

We sought to assess whether a closed-loop BCI
system with visual and FES feedback could
improve motor function in two chronic stroke
patients who did not benefit from conventional
therapy. This study presents the measurement pro-
cedures and results after 10 BCI training sessions
with the first two chronic stroke patients who
agreed to participate in our study.

SUBJECTS AND METHODS

All recording and real-time analysis used recov-
eriX, which is a complete hardware and software
platform that can record, analyze, and utilize elec-
troencephalographic (EEG activity) in real-time.
All real-time signal processing and classification
methods in this article were implemented in recov-
eriX. Figure 1 shows the recoveriX system mounted
on a patient and the electrode montage. The
patients imagine or perform specific movements
such as the wrist extension of their paretic limbs.
Their corresponding brain activity is acquired by
EEG electrodes, then sent to an amplifier. Both a
horizontal bar for visual feedback and FES stim-
uialtion for proprioceptive feedback are provided
to patients when the classification algorithm in
recoveriX detects correct MI.

Subjects

Two stroke patients in the chronic stage partici-
pated in our study. They were both right handed and
performed classical poststroke rehabilitation therapy

FIG. 1. RecoveriX system mounted
on a patient (left) and the EEG elec-
trode placement (right).

until they joined the study. P1 (female) was 40 years
old when the intervention began (5.5 years after
stroke) and had severe paralysis in her left hand with
no residual movement. She had received conven-
tional therapy for 2 years and no significant func-
tional improvement had been observed before her
participation in this study. P2 (male) was 59 years
old when intervention began (3.25 years after stroke)
and his left arm remained paralyzed, being able to
move the middle finger in a range of 0.5 cm. Before
participating in our study, in addition to conventional
rehabilitation therapy, he performed TMS and mir-
ror rehabilitation therapies, but with no functional
improvement. They both participated in 10 recov-
eriX training sessions at the Rehabilitation Hospital
of Iasi, Romania. The study was approved by the
Institutional Review Board of the of the Rehabilita-
tion Hospital of Iasi, and both patients signed an
informed consent before starting the study.

Stimuli and procedure

The patients were seated in a comfortable chair
in front of a computer monitor that presented
visual instruction and feedback (see Figs. 1 and 2)
with FES pads placed over the forearm of the
affected side. FES stimulation stimulation was pro-
vided through an 8-channel neurostimulator
(MOTIONSTIMS, Krauth + Timmermann GmbH,
Germany). For both patients, the first session was a
training session, where the subjects were trained
regarding the correct MI tasks, and then conducted
two practice runs to get familiar with the experi-
ence of electrical stimulation and visual feedback.

During all subsequent sessions, after setting up
the system, each patient first performed 4 runs to
train BCI classifiers and then 2 runs to test onlinc
BCI performance. One run contained 40 trials,
each eight seconds, with a randomly chosen inter-
trial interval between 1 and 2 s. Each run required
6 min in total. Each imagination trial started with
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FIG. 2. Time course of a single trial. A fixation cross appears
when the trial begins. A short beep is played after 2 s. One
second later, a visual instruction is presented. The user
receives online feedback based on Ml from 4 s until the end of
the trial (8 s).

the display of a cross in the center of the monitor.
After 2 s, a beep informed the user about the
upcoming instruction. The patients were instructed
to start imagining the movement of either the left
or right hand when an arrow pointing to the left or
right side was presented as a visual instruction for
1 s. Both visual and proprioceptive feedback began
0.5 s after the visual instruction ended. A blue bar
on the monitor extended to the left or right, indi-
cating both the direction and magnitude of the MI
as visual feedback. The FES was activated with a
50 Hz updating rate if the user imagined hand

movement on the correct side. The muscle
—» CSP, » Var, [—p
Band —»{ CSP, —» Var, (—p»
g.Hlamp »  Filter =
8Hz - 30Hz
— CSP“ » Var .

Artif Organs, Vol. 41, No. 11, 2017

D.C. IRIMIA ET AL.

contraction by FES was sufficient enough to cause
movement of the affected hand in both patients.
The patients had to continue imagining the move-
ment for 4 s after the arrow instruction was pre-
sented, after which the feedback and the trial
ended. The inter-trial interval was 2 s.

Data acquisition and signal processing

We recorded patients’ sensorimotor rhythm using
45 active EEG electrodes (g.LADYbird, g.tec med-
ical engineering GmbH, Schiedlberg, Austria). The
electrodes overlaid the sensorimotor area of cortex.
Fpz was used as the ground electrode, and a refer-
ence electrode was placed on the right earlobe. Fig-
ure 3 shows the signal processing chain. EEG
signals were transmitted to a biosignal amplifier
(g.HIamp, g.tec medical engineering). They were
first bandpass filtered (butterworth filter fourth
order) between 8 and 30 Hz. Then, common spatial
patterns (CSP) (8) were applied to transform the
data to a new matrix with minimal variance of one
class and maximal variance of the other class. Each
class reflects the MI of the according hand versus
the motion of the other one. Given N channels of
EEG for each left and right trial, the CSP method
provides an N X N projection matrix. This matrix
is a set of subject-dependent spatial patterns, which
reflect the specific activation of cortical areas dur-
ing hand MI. With the projection matrix W, the
decomposition of a trial X is described by:

Z=WX (1)

This transformation projects the variance of X
onto the rows of Z and results in N new time series.
The variance for one class is largest in the first row
of Z and decreases in each subsequent row due to
the transformation matrix, W. Only first and last two
rows (p =4) of W are used to apply the spatial pat-
terns, resulting in four new feature channels: CSP,,
where n represents the number of the row. Next, the

FIG. 3. Schematic view of
the signal processing work-
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recoveriX feedback control.
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variance (VARp) is calculated using a sliding win-
dow of 384 samples, which is 1.5 s. For each new
sample the sliding window is shifted by one sample
to receive four new variance values. These values
are normalized and log transformed according to:
fr=logy, <4VA7RP> (2)
2p=1 VARP
where f, (p =1:4) are the normalized feature vec-
tors and VAR, is the variance of p-th spatially fil-
tered signal. These four features are classified with
a linear discriminant analysis (LDA) classifier. This
LDA classification result drives the BCI feedback
block. The classifier used in this article sought to
classify left versus right hand MI, but this general
approach is widely used.

Training data recorded during the first 4 runs of
each session, five sets of spatial filters and classifiers,
were calculated from 2-s time windows, shifted in
time with a 0.5 Hamming window based on data
from the time interval from 4 to 8 s in each trial. The
classifier with the highest 10-fold cross-validated accu-
racy was chosen to provide visual and FES feedback
while recording runs 5 and 6. These last 2 runs were
used to calculate the online accuracy of the chosen
classifier for the current session. To provide feedback
during the first 4 runs, we used the spatial filters and
classifier calculated in the previous session.

RESULTS

Figure 4 presents the online BCI classification
accuracy across 10 sessions for both P1 and P2. The
patients reported that they actively participated in
MI tasks as instructed. For patient P1, the accuracy
in the first two sessions is slightly over the chance
level of 50%, and the accuracy of the remaining
eight sessions improved substantially. The accuracy

Accuracy [%]

1 2 3 4 5 6 7 8 9 10
Session Number

—a—P1 —8—P2

FIG. 4. BCI online classification accuracy across 10 recoveriX
training sessions.

dropped to 82.5% in session number 8, which the
patient believed resulted from lack of sleep during
the previous night. Patient P2 started with a slightly
higher accuracy and maintained above 90% from
session 4 to the last session. Figure 5 shows results
within trials.
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FIG. 5. Linear discriminant analysis (LDA) values of first and
last training sessions for both patients are presented in the left
and right panels, respectively. The dotted blue lines indicate the
LDA values of right motor imagery and the solid blue line shows
the average of them. The dotted green lines indicate the LDA
values of left motor imagery and the solid green line shows the
average of them. Left and right trials were expected to have
positive and negative LDA values, respectively. The classifica-
tion accuracies were calculated with LDA values in the feed-
back period (4 ~ 8 s).
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FIG. 6. Event-related desynchronization (ERD) plots of session
the first and last (10th) sessions for P1. The plots were pro-
duced by g.BSanalyze (g.tec medical engineering GmbH,
Schiedlberg, Austria). This averaged ERD plot was based on
8 ~ 12 Hz frequency bands of channel C4, which is located on
the lesioned hemisphere. The red vertical line indicates the
beep at 2 s, and the red horizontal line reflects the 1-s delay
until instructions were presented.

Event-related desynchronization plots also
showed that the patients were able to perform the
MI tasks. Figure 6 shows two examples of the first
and last sessions for P1. ERD is observed in both
sessions and statistical comparison between two
ERD plots is necessary in the future. However, it is
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on MI tasks. Moreover, Fig. 7 presents the 10-fold
cross-validated accuracy plots for sessions 1 and 10,
calculated on the classifier training data. The left
hand MI data are represented with a yellow line,
the right hand MI with a blue line, and the overall
accuracy with a green line. These plots also show
that P1 started with an overall accuracy of about
60%, accuracy which went above 95% in the 10th
session. Patient P2 started with a good accuracy,
above 90% even from the first session and it went
up to about 95% in the last session.

After 10 training sessions, both patients showed
improved motor function. P1, who had no finger
and wrist movement, was able to voluntarily relax
and extend the wrist of her paretic side. P2 started
voluntarily moving all the fingers of the paretic
arm, the middle finger movement range increasing
from 0.5 cm to approximately 1.5 cm. It was not
possible to practice the Nine-Hole Peg Test and
measure the electromyogram (EMG) due to com-
plete paralysis of her left hand before the session
started, and alternative behavioral measurements
are not available in this case study.

CONCLUSIONS

We showed that two chronic stroke patients who
did not benefit from conventional therapy could
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FIG. 7. The 10-fold cross-validated results from the training data of session 1 and session 10 for both patients.
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FIG. 8. Schematic illustration of the new recoveriX system to
be used in future research.

interface accuracy using a motor imagery-based
BCI for rehabilitation. Both patients showed some
motor improvement. The higher BCI accuracy and
LDA values of later sessions implies that the
patients learned to use the BCI effectively. One of
the main reasons might be the motivation of the
patients. Their enthusiasm to regain voluntary con-
trol over their paretic hands motivated them to be
very engaged while working with recoveriX.

These initial results extend prior work that has
also shown that BCIs using MI can be effective
tools for motor rehabilitation (1,2,9-13). However,
nearly all prior results focus on patients in the
acute or subacute stages, whose conventional ther-
apy improvements may be hard to separate from
BCI improvements. The current results suggest that
this approach may even benefit patients in the
chronic stage who showed no improvement during
conventional therapy. As this is only a case study,
additional research is needed to explore this sug-
gestion and others presented here.

We do plan to conduct this research. The recoveriX
system and current training paradigm will be updated
and studied with a larger patient population in com-
parison with a control group for meaningful statistical
outcomes. A new FES device will replace the current
FES device for an easier interface with the software.
The bar feedback will be replaced with a three-
dimensional forearm using virtual reality for a more
immersive environment. We will reduce the number
of channels to reduce cost and setup time. EEG will
be wirelessly transmitted using a much smaller ampli-
fier via g.Nautilus, as seen in Fig. 8. We will also
introduce improved classifier software and new para-
digms for training different limb movements.

Overall, the current initial results further support
mounting evidence that BCI-based therapy can

yield better results than conventional therapy, for
different types of stroke patients. Future work
might incorporate haptic systems, EMG and other
multimodal signals, noninvasive brain stimulation,
and/or devices to facilitate lower limb
rehabilitation.
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