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ABSTRACT
Brain–computer interfaces (BCI) decode user’s intentions to control external
devices. However, performance variations across individuals have limited their
use to laboratory environments. Handedness could contribute to these
variations, especially when motor imagery (MI) tasks are used for BCI control.
To further understand how handedness affects BCI control, performance
differences between two monozygotic twins were analysed during offline
movement and MI tasks, and while twins controlled a BCI using right-hand MI.
Quantitative electroencephalography (qEEG), brain structures’ volumes, and
neuropsychological tests were assessed to evaluate physiological, anatomical
and psychological relationships with BCI performance. Results showed that
both twins had good motor imagery and attention abilities, similar volumes
on most subcortical brain structures, more pronounced event-related
desynchronization elicited by the twin performing non-dominant MI, and that
this twin also obtained significant higher performances with the BCI. Linear
regression analysis implied a strong association between twins’ BCI
performance, and more pronounced cortical activations in the contralateral
hemisphere relative to hand MI. Therefore, it is possible that BCI performance
was related with the ability of each twin to elicit cortical activations during
hand MI, and less associated with subcortical brain structures’ volumes and
neuropsychological tests.
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Introduction

Brain-Computer Interfaces (BCI) are systems which allow users to control
external devices by decoding their intentions from neurological sources
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such as the electroencephalogram (EEG). In order for EEG-based BCI systems
to decode users’ intentions, the EEG signal must be acquired, pre-processed,
and processed through temporal and spatial digital filters. Afterwards, a pro-
cessing stage allows specific task-related features to be extracted and
classified. Following task classification, communication with an external
device, such as a computer monitor, or a robot, allows control of the device
using user’s intentions (Wolpaw, Birbaumer, McFarland, Pfurtscheller, &
Vaughan, 2002). Performance with a BCI is often measured as the percentage
of user’s attempts or trials for which the BCI correctly identified commands
prompted by the user. Most BCI provide performance feedback to the user,
with visual and somatosensory feedbacks being the most commonly reported
(King et al., 2014; Kondo, Saeki, Hayashi, Nakayashiki, & Takata, 2015). BCIs
have a wide range of applications including entertainment (Kerous, Skola, &
Liarokapis, 2018), neuromarketing (Morin, 2011), wheelchair control (Ron-
Angevin et al., 2017), and neurorehabilitation (Soekadar, Birbaumer, Slutzky,
& Cohen, 2015). For users to achieve control of a BCI, a strategy or paradigm
must be performed to generate EEG patterns from which intentions can be
recognized. Although several BCI paradigms are currently used, motor
imagery (MI) has the advantage that it does not require an external stimulus
and, has shown potential for BCIs aimed for neurorehabilitation (Alonso-
Valerdi, Salido-Ruiz, & Ramirez-Mendoza, 2015).

MI is the mental rehearsal of a movement, for example, hand or feet,
without performing the actual movement (Jeannerod & Decety, 1995;
Pfurtscheller & Neuper, 2001). Several studies featuring advanced imaging
techniques have shown that MI-related cortical activations are similar to
those observed when actual movement is performed (Carrillo-de-la-Peña,
Galdo-Álvarez, & Lastra-Barreira, 2008; Kraeutner, Gionfriddo, Bardouille, &
Boe, 2014; Rodriguez, Llanos, & Sabate, 2009). Before movement-related
tasks, such as handMI, a decrease in EEG power relative to a reference or base-
line period can be observed in alpha and beta bands (known as Event-Related
Desynchronization, or ERD), as described by Pfurtscheller and da Silva (1999).
During voluntary hand movement, it has been reported that alpha ERD can be
elicited in the contralateral hemisphere, and that after movement, the central
area can exhibit alpha Event-Related Synchronization (increased power rela-
tive to a reference period) (Pfurtscheller & da Silva, 1999). In addition, after
1 s of terminating a movement task, beta ERS can also be observed
(Pfurtscheller & da Silva, 1999). Furthermore, hand MI has been reported to
elicit mu ERD in the cortical hand representation area contralateral to the
task (Pfurtscheller, Brunner, Schlögl, & da Silva FH, 2006). In healthy subjects,
it has been observed that right- and left-hand MI can elicit contralateral desyn-
chronization and/or synchronization similar to activations observed when
right- and left-hand movements are performed (Carrillo-de-la-Peña et al.,
2008; Kraeutner et al., 2014). However, in some cases, MI elicits ipsilateral or
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bilateral activations (Pfurtscheller & da Silva, 1999; Cantillo-Negrete, Gutiérrez-
Martínez, Flores-Rodríguez, Cariño-Escobar, & Elías-Viñas, 2014).

Despite the promising applications of BCI systems, most of them are still
restricted to universities and laboratory environments, since not all target
users will be able to achieve control of the system (Edlinger, Allison, &
Guger, 2015). Some reasons for this, include high variability between EEG
signals from different users (Kang, Ojha, Lee, & Lee, 2017; Meyer, van Oort,
& Barth, 2013), between EEG signals of same users recorded at different
time periods (Cajochen & Dijk, 2003; Peterson & Harmon-Jones, 2009),
gender differences (Cantillo-Negrete, Gutierrez-Martinez, Carino-
Escobar, Carrillo-Mora, & Elias- Vinas, 2014; Duregger et al., 2007), users’
inability to correctly perform the targeted BCI paradigm (Edlinger et al.,
2015; Vuckovic & Osuagwu, 2013), spatial ability (Jeunet, Jahanpour, &
Lotte, 2016), ability to perform mental and movement tasks (Friedrich,
Neuper, & Scherer, 2013; Lotte, Larrue, & Mühl, 2013), feedback type (Lotte
et al., 2013), task’s instructions (Lotte et al., 2013), and handedness (Kasuga
et al., 2015; Willems, Toni, Hagoort, & Casasanto, 2009; Zhang, Yuan, Huang,
Yang, & Chen, 2014). Some studies have reported that subjects performing
MI of their dominant or non-dominant hand can also affect their ability to
elicit MI-related patterns. Willems et al. described differences in functional
Magnetic Resonance Images (fMRI) between right and left-handed healthy
subjects while performing hand MI tasks, specifically in the contralateral pre-
motor and motor cortex. Compared with ipsilateral, contralateral activations
were stronger if subjects performed MI of their dominant hand (Willems
et al., 2009). Another study using fMRI showed higher Blood Oxygen Level
Dependent (BOLD) power changes in healthy subjects with right-handedness
while performing a left-hand MI task, compared to right-hand MI. This implied
that right-handed healthy subjects recruited more nerve cells for performing
left MI (Zhang et al., 2014). Also, Kasuga et al. reported differences in ERD eli-
cited by MI from the dominant and non-dominant hand of healthy subjects,
after transcranial direct current stimulation was applied to the dominant con-
tralateral primary motor cortex. Subjects showed increased ERD during domi-
nant hand MI, and only a small ERD increase during non-dominant hand MI,
after the stimulation procedure (Kasuga et al., 2015). Therefore, BCI control
with dominant or non-dominant hand MI tasks could affect users’ perform-
ance with these systems.

Several BCIs described in the literature, especially those proposed for neu-
rorehabilitation, use hand MI as control scheme (Ang et al., 2014; Cantillo-
Negrete, Carino-Escobar, Carrillo-Mora, Elias-Vinas, & Gutierrez-Martinez,
2018; Ono et al., 2014; Várkuti et al., 2012). It is reasonable to assume that
hand dominance could affect BCI performance, since studies have observed
differences in MI patterns associated with hand dominance (Kasuga et al.,
2015; Willems et al., 2009; Zhang et al., 2014). However, to the authors’
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knowledge, there are no studies reporting how hand dominance is related to
BCI performance. Such studies could be useful for BCI design considerations,
such as MI strategies, and could provide more information for BCI systems
aimed for neurorehabilitation; since patients often have paralysis of one
side of the body (hemiparesis) and are unable to move the hand contralat-
eral to their affected brain hemisphere (Katzan, 2017). Therefore, some
patients will have paralysis in their non-dominant hand, and their ability to
control a BCI could be different from patients with paralysis in their domi-
nant hand.

The goal of the present study was to analyse if dominant or non-dominant
hand MI tasks could have an effect regarding BCI performance in a case study
of discordant handedness. For this purpose, two users with similar environ-
mental and genetical backgrounds, such as a pair of monozygotic twins with
discordant hand dominance, were recruited and attempted to control a BCI.
To test BCI performance under different feedback conditions, visual and soma-
tosensory feedbacks were provided by means of a simulated virtual hand, and
by a robotic hand orthosis, respectively. Brain Magnetic Resonance (MR), quan-
titative EEG, neuropsychological tests, and classification accuracy were
analysed to assess anatomical, physiological, psychological, and BCI perform-
ance differences between the twins, respectively, and to analyse possible
relationships between BCI performancewith the other variables. It was hypoth-
esized that the twin attempting to control the BCI system using dominant hand
MI would achieve a higher performance, due to having the advantage of using
the dominant hand for controlling the system.

Materials and methods

Subjects

Two female monozygotic twins with discordant handedness were recruited,
age 24 at the time of the study, without any reported prior neurological con-
ditions. An Edinburgh handedness inventory, adapted for Spanish-speaking
populations, was used to test hand dominance (Oldfield, 1971). The subscales
of digit detection and visual detection of the NEUROPSI Attention and
Memory were used to evaluate attentional processes (Ostrosky-Solis,
Gomez-Perez, Ardilla, Rosselli, & Matute, 2003). The complete version of the
MI ability test known as Kinesthetic and Visual Imagery Questionnaire
(KVIQ) was applied to both subjects (Malouin et al., 2007). The KVIQ is com-
prised by 17 items for the visual scale, and 17 items for the Kinesthetic
scale. Subjects were asked to evaluate the clarity of the visual image (visual
scale) or the intensity of sensations associated with their MI. Rating of each
item is performed using a 5-point ordinary scale. Average values computed
for Visual and Kinesthetic scales are presented for each twin. Both twins
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signed an informed consent approved by the ethical commission of the
National Institute of Rehabilitation in Mexico City.

Magnetic resonance and volumetric analysis of brain structures

Volumes of twins’ brain structures were compared in order to assess if ana-
tomical brain asymmetries, were present between twins, and to assess
relationships between brain structures’ volumes and BCI performance.
Image sequence was acquired using a 64 channels head coil (Siemens Skyra
3.0T, Erlangen, Germany). The anatomical scan collected 192 slices with 1 ×
1 × 1.2 mm voxel size, repetition time and echo time (TR/TE) were of 2050/
2.43 ms, slice thickness 1.2 mm, field of view (FOV) 256 × 256, and matrix
256 × 256.

The volumetric analysis of brain structures was performed for each twin
using FreeSurfer software (Reuter, Schmansky, Rosas, & Fischl, 2012). After
automatic segmentation, the estimated total intracranial volume, total grey
matter volume, total white matter volume, and white and grey matter per
hemisphere volumes were computed. Subcortical brain structures’ volumes
were also computed. Percentage differences between twins’ brain structures,
regarding right and left hemispheres, and between the dominant hemi-
spheres of each twin, were calculated for comparison purposes.

Experimental paradigm

Each twin participated in four sessions during four consecutive days at the
same hour. The first two sessions, session 1 and 2, were calibration sessions;
each one comprised by 60 trials of right-hand movement (RIGHTM), 60
trials of left-hand movement (LEFTM), 60 trials of right-hand MI (RIGHTMI),
and 60 trials of left-hand MI (LEFTMI). Each run was comprised by 10
RIGHTM and 10 LEFTM trials or by 10 RIGHTMI and LEFTMI trials randomly pre-
sented to the subjects to prevent habituation. Therefore, in total, 120 trials
were acquired for LEFTMI, 120 for RIGHTMI, 120 for LEFTM, and 120 for
RIGHTM tasks. For each trial, a modified Graz paradigm was used to present
visual cues to the subject (Pfurtscheller & Neuper, 2001). Each trial lasted 8 s
and started with a white cross displayed on the computer’s screen, 2 s later
a short warning tone was reproduced. In this period subjects were instructed
to rest with eyes open looking at the cross (REST condition). After the 3rd
second, the cross was replaced by an arrow pointing at the right or left direc-
tion. This instructed the subject to perform either RIGHTM or LEFTM for move-
ment runs, or RIGHTMI or LEFTMI for MI runs. The arrow lasted 1.5 s on the
screen and afterwards disappeared leaving a black background for 3.5 s
while subjects continued performing MI. In calibration sessions, at the 8th
second of the trial, a blue screen appeared instructing the subject to relax
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and blink (relaxation period), this period lasted between 3 and 5 s to prevent
habituation. For each trial, extracted EEG data were comprised by 3 s of REST,
and 3 s of RIGHTM, LEFTM, RIGHTMI or LEFTMI. In order to calibrate the BCI
system only REST, and RIGHTMI time intervals were used. For quantitative
EEG analysis, data from REST, movement, and MI trials were used. In the last
two sessions, session 3 and 4, subjects attempted to control the BCI system
through visual and somatosensory feedback. In each session, each subject
performed 120 trials. On session 3, the first 60 trials were comprised by
visual feedback and the last 60 trials by somatosensory feedback; in the
fourth session, the first 60 trials were comprised by somatosensory feedback
and the last one, by visual feedback. The differences between offline and
online analysis were that the online trials were only comprised by RIGHTMI
and had a feedback interval from the trial’s 8th second until the 12th
second, and the relaxation period started after this interval. Offline and
Online trials’ structures can be observed in Figure 1.

For MI tasks, subjects were instructed to imagine the feeling of closing and
opening their hands by recalling such sensation of movement from hand
movement tasks. For offline tests, it was confirmed that the twins performed
correctly right or left MI, by asking them to say the word “left” or “right” at the
end of each trial (at a time in which EEG features were not extracted). Twins

Figure 1. (A) Offline trials’ time structure. (B) Online trials’ time structure with two types
of feedback. Number of trials (n) for every analysis is shown.
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were asked to depict how they performed MI at the end of each offline and
online run, stating they have attempted MI as instructed.

EEG acquisition

A 24-bit amplifier, g.USBamp from g.tec, was used for EEG recordings. A total
of 11 EEG channels were acquired over the sensorimotor cortex according to
the international 10–20 system (Cz, C3, C4, Pz, P3, P4, Fz, F3, F4, T3, and T4)
using active electrodes at a 256-Hz sampling rate. The right earlobe was
used as reference electrode and ground electrode was located at the AFz
position.

BCI system

The BCI system was comprised by the previously described EEG amplifier, a
processing stage implemented in a PC, and a feedback strategy. The pro-
cessing stage was encompassed by pre-processing, feature extraction,
feature selection, and classification of EEG signals (Cantillo-Negrete et al.,
2018). In order to set up the processing stage for BCI online control (cali-
bration), offline EEG data from 120 trials of REST and RIGHTMI were
inputted into a training algorithm. This algorithm first performed a tem-
poral filtering of the EEG data to obtain six frequency sub-bands, 4 Hz
broad, and 1 Hz overlapping. The filtered bands comprised mu and beta
(8–12, 12–16, 16–20, 20–24, 24–28, and 28–32 Hz). Afterwards, a 60-Hz
band-stop filter was applied to each filtered band. Temporal filters were
FIR of 20th order. After temporal filtering was performed, spatial filters
were applied to each frequency sub-band using the Common Spatial Pat-
terns algorithm (CSP) (Ang, Chin, Wang, Guan, & Zhang, 2012; Ramoser,
Muller-Gerking, & Pfurtscheller, 2000). CSP extracted features were selected
with the Particle Swarm Optimization (PSO) algorithm (Carino-Escobar, Can-
tillo-Negrete, Vazquez, & Gutierrez-Martinez, 2016). Selected CSP features
were used for Linear Discriminant Analysis (LDA) classification between
the resting state (REST) and right-hand MI (RIGHTMI). Therefore, after the
calibration phase of the processing stage, CSP coefficients for spatial
filtering, and LDA coefficients for classification were computed. During
online BCI control non-overlapped 1-s windows of EEG data were spatially
filtered in selected frequency bands obtained for each twin in the cali-
bration phase. Afterwards, these filtered 1-s windows were classified as
REST or as RIGHTMI. Feedback was provided only if two or more of the
three 1-s windows that comprised RIGHTMI (from the 4th to the 7th
second), were correctly classified. Two different types of feedback could
be given to the subjects, visual or somatosensory. Visual feedback was
given in the form of a virtual right hand which finger’s opened and
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closed simulating a grasping action. Somatosensory feedback was com-
prised by a robotic hand orthosis (Cantillo-Negrete, Carino-Escobar, Elias-
Vinas, & Gutierrez-Martinez, 2015; Martinez-Valdes et al., 2014), which pro-
vided passive flexion followed by extension movement of the right-hand’s
fingers, thus allowing the user to perform a grasping action. Figure 2 shows
the BCI system.

Offline and online quantitative EEG measurement

Power features were extracted using time–frequency analysis by convoluting
complex Morlet wavelets with Gaussian shapes. Analysis was performed in a
frequency range from 8 to 30 Hz with a 0.5 Hz resolution; and from 0 to 8 s
(the complete trial) with steps of 50 ms. ERD/ERS were computed with
respect to baseline for movement and MI offline trials, in alpha (8–13 Hz)
and beta (14–32 Hz) bands. ERD/ERS was also computed with respect to
baseline for online RIGHTMI, for visual and somatosensory feedbacks, in
alpha and beta. Topographic brain maps were computed for the averaged
data of 11 EEG channels (Cz, C3, C4, Pz, P3, P4, Fz, F3, F4, T3, and T4) from
offline and online sessions. For offline measurements, sets of brain maps
were computed using averaged alpha and beta ERD/ERS across trials with
RIGHTM and LEFTM data (from 4 to 7 s of each trial), and another set of
brain maps using RIGHTMI, and LEFTMI data (from 4 to 7 s of each trial).
For online measurements a set of brain maps were computed with averaged
ERD/ERS computed from RIGHTMI time intervals from all trials, for visual and
somatosensory feedbacks. For comparison purposes all maps were calculated

Figure 2. BCI system. The online phase of the BCI processing stage is depicted.
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using the same ERD/ERS scale. Figure 2 shows the methodology for offline
and online data processing.

Online BCI performance

For online BCI performance assessment, the number of correctly classified
trials was computed for the 120 trials recorded for each subject (sessions 3
and 4), separately for visual or somatosensory feedbacks. This was done by
using the three classification outputs during each second of the REST con-
dition and the three outputs during the MI. Therefore, for each trial, %CA (per-
centage of classification accuracy) was computed using Equation (1), as
follows:

%CA = (REST1 + REST2 + REST3)+ (RIGHTMI1 + RIGHTMI2 + RIGHTMI3)
6

× 100.

(1)

With REST and MI having a value of 1 if the LDA classifier of the BCI proces-
sing stage correctly classified a time window of EEG processed data, and 0 if
the classification was incorrect for that time window. The sub-index of REST
and MI show which of the three analysed time windows was classified (for
example, 1 for the first processed time window). The output of this equation
is an ordinary variable, which can be equal to 100%, 83.3%, 66.66%, 50%,
33.3%, 16.6%, and 0%. This value is the %CA for each trial. After computing
the %CA, a trial was regarded as correct if the value of a %CA was higher
than the practical level of chance (56.2%), computed as stated by Muller-
Putz et al. (2008). Comparisons were computed between the Right-Handed
Twin’s (RTWIN) and the Left-Handed Twin’s (LTWIN) number of correct trials
expressed as percentage (%CT) for the visual and somatosensory feedback
conditions.

Statistical analysis

For the KVIQ questionnaire significant differences between RTWIN’s and
LTWIN’s scores for the visual and kinesthetic scales were assessed using a
Mann–Whitney U test (α = 0.05) after testing for a non-Gaussian distribution
using a Lilliefors normality test.

For offline and online qEEG measurements differences between the
RTWIN’s and LTWIN’s ERD/ERS were computed using the Friedman test (α =
0.05), after testing a non-Gaussian distribution using a Lilliefors normality
test. Post hoc comparisons were performed using Mann–Whitney U tests
with the Bonferroni correction.

For BCI performance the number of correct and incorrect trials were a
dichotomous variable, therefore, Chi-Squared tests (α = 0.05) for
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independence, with Bonferroni correction, were used to assess statistically sig-
nificant distribution differences between RTWIN’s and LTWIN’s, separately for
visual and for somatosensory feedbacks. Post Hoc statistical power (α = 0.05)
was computed using the g*power software (Faul, Erdfelder, Lang, & Buchner,
2007, 2009), considering the 120 acquired values of number of correct and
incorrect trials per twin.

Associations between twins’ BCI performance with visual and somatosen-
sory feedback, with KVIQ results, subcortical structures’ volumes, and ERD/
ERS were assessed using a stepwise multiple linear regression analysis
(Draper & Smith, 1998). The kinesthetic and visual scores of the KVIQ, subcor-
tical structures’ volumes with a percentage difference higher than 10%
between twins, and median ERD/ERS channels which presented significant
differences during MI throughout online BCI control, were inputted into
the linear model. Stepwise regression allowed to test which variables
could potentially predict BCI performance variability. Cross-validation and
permutation tests were applied to assess the regression model’s stability
and reliability (Draper & Smith, 2014). A leave-one-out cross-validation was
performed, and the root mean squared error (RMSE) was computed. The per-
mutation test was comprised by performing the regression of all possible
permutations of the dependent variable (%CT) and computing the p-
values of the statistic. Afterwards, the p-values were ordered, and the pro-
portion of these values lower than the confidence level of .05 was set as
the significance value for assessing the reliability of the obtained model
(Nyblom, 2015).

Results

Volumetric analysis of brain structures

Table 1 shows brain structures’ volumes computed for each twin. Total intra-
cranial volume was 1.5% higher for the RTWIN. Twins’ dominant hemispheres’
cortical white and grey matter volumes differed in less than 10%. RTWIN’s
brain structures with percentage differences higher than 10% compared to
LTWIN’s were the Left Accumbens area and the Central Corpus Callosum.
LTWIN’s brain structures with percentage differences higher than 10% com-
pared to RTWIN’s were the Left cerebellum white matter, the Left and Right
Lateral Ventricles, the 3rd and the 4th ventricle. The brain structure that
showed the highest percentage difference between twins was the Right
Inferior Lateral Ventricle, which had a larger volume in the LTWIN. Also,
when comparing brain structures’ volumes relative to twins’ handedness,
the structures that showed differences higher than 10% were the lateral ven-
tricle, inferior lateral ventricles, and the Pallidum, with the LTWIN presenting
higher volumes in these structures.
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Table 1. Brain structures volumes.

Brain structures (mm3)
RTWIN
(mm3)

LTWIN
(mm3)

RTWIN vs. LTWIN percentage
difference (%)

Brain Segmentation Volume 1,154,764 1,156,160 −0.1
Brain Segmentation without
Ventricles

1,143,021 1,140,547 0.2

Left Hemisphere cortical grey matter
volume

241,350 238,467 1.2

Right Hemisphere cortical grey
matter volume

246,486 240,668 2.4

Total cortical grey matter volume 487,836 479,136 1.8
Left Hemisphere cortical white matter
volume

226,075 229,943 −1.7

Right Hemisphere cortical white
matter volume

231,269 232,909 −0.7

Total cortical white matter volume 457,344 462,853 −1.2
Subcortical grey matter volume 59,512 59,396 0.2
Total grey matter volume 656,972 646,123 1.7
Left Lateral Ventricle 3,997 5,522 −27.6
Left Inferior Lateral Ventricle 215 322.6 −33.4
Right Lateral Ventricle 3,317 4,492 −26.2
Right Inferior Lateral Ventricle 102 377 −72.9
3rd Ventricle 566 662 −14.5
4th Ventricle 963 1,106 −12.9
Left Cerebellum White Matter 14,188 16,724 −15.2
Left Cerebellum Cortex 53,563 52,970 1.1
Right Cerebellum White Matter 14,398 15,273 −5.7
Right Cerebellum Cortex 55,577 53,686 3.5
Left Pallidum 1,256 1,378 −8.9
Right Pallidum 1,380 1,512 −8.7
Left Caudate 4,048 4,237 −4.5
Right Caudate 3,894 3,996 −2.6
Left Putamen 6,147 6,197 −0.8
Right Putamen 5,455 5,553 −1.8
Left Accumbens area 690 572 20.6
Right Accumbens area 661 656 0.8
Posterior Cerebral Callosum 950 959 −0.9
Posterior Middle Corpus Callosum 429 466 −7.9
Central Corpus Callosum 906 766 18.3
Anterior Middle Corpus Callosum 697 652 6.9
Anterior Corpus Callosum 1,080 1,109 −2.6
Dominant Hemispheres’
Cortical grey matter volume 241,350 240,668 0.3
Cortical white matter volume 226,075 232,909 −3.0

Dominant Lateral Ventricle 3,997 4,492 −12.4
Dominant Inferior Lateral Ventricle 215 377 −75.3
Dominant Cerebellum White Matter 14,188 15,273 −7.6
Dominant Cerebellum Cortex 53,563 53,686 −0.2
Dominant Pallidum 1,256 1,512 −20.4
Dominant Caudate 4,048 3,996 1.3
Dominant Putamen 6,147 5,553 9.7
Dominant Accumbens area 690 656 4.9
Estimated Total Intracraneal Volume 1,433,153 1,411,375 1.5

Notes: RTWIN’s volume differences with respect to LTWIN’s are expressed as percentages. Positive values
show higher volumes for RTWIN and negative values indicate higher volumes for LTWIN. Differences
higher than 10% are shown in bold.
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Neuropsychological tests

Table 2 shows the results of the tests performed on both twins. The Edinburgh
Handedness Inventory showed that the RTWIN had the highest score for right-
hand dominance, while the LTWIN had the highest score for left-hand
dominance.

During the neuropsychological assessment, the participants were alert and
oriented in time and space. They were able to attend to the stimulus of inter-
est and ignore the irrelevant ones. In addition, they could stay concentrated
on the task for a long time without being distracted. No history for major psy-
chiatric or neurological disorders, as well as for drug or alcohol dependency,
prior and after to the study, was observed during the assessment.

The KVIQ test showed that both twins had moderate to moderately high
visual and kinesthetic imagery abilities. For the visual scale, no significant
differences (p < .05) were found between RTWIN’s and LTWIN’s scores.
However, for the kinesthetic scale, significant (p < .05) differences were
found between RTWIN’s and LTWIN’s scores, with the RTWIN having higher
scores compared to the LTWIN.

Offline quantitative EEG measurements

Figure 3 shows topographic brain maps plotted with ERD/ERS obtained during
offline movement trials. EEG channels with statistically significant ERD/ERS
differences (p < .05) between RTWIN and LTWIN are shown, for alpha and
beta frequency bands and for RIGHTM and LEFTM tasks (with comparisons
between dominant vs. dominant and non-dominant vs. dominant hemi-
spheres of the twins).

During movement, ERD was observed in twins’ ipsilateral and contralateral
central EEG channels (C3 and C4) in both alpha and beta. In alpha, RIGTHM

Table 2. Results of the neuropsychological assessment of both twins.

Measurement

Edinburgh handedness inventory

RTWIN LTWIN

Total 100%/100% Right-handed 100%/100% Left-handed
Test NEUROPSI Attention and Memory
Subject RTWIN LTWIN
Visual detection total 24/24 23/24
Digit detection 10/10 10/10
Measurement Kinesthetic and Visual Imagery Questionnaire (KVIQ)

RTWIN LTWIN
Visual Kinesthetic* Visual Kinesthetic*

Total average (SD) 4.2/5 (±0.8) 4.4/5 (±0.8) 3.7/5 (±0.9) 3.5/5 (±1.2)

Notes: The Edinburgh Handedness Inventory and NEUROPSI show the total scores of each twin. The KVIQ
shows the average total of visual and kinesthetic scales’ scores and their standard deviations, “*” shows
that statistically significant differences (p < .05) were observed between twins’ visual or kinesthetic
scores. The maximum magnitude of each scale is shown to the right of each of the twin’s scores.
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presented less differences between twins’ cortical activations, with no signifi-
cant differences observed in the central areas. Dominant hand movement
tasks presented the most differences regarding cortical activation regions,
in both alpha and beta. The channel C3 presented significantly different
ERD/ERS between twins across more comparisons (dominant vs. non-domi-
nant in alpha and beta, and in beta for the dominant vs. dominant
comparison).

Figure 4 shows topographic brain maps for ERD/ERS information extracted
during offline MI trials. EEG channels with statistically significant differences
between ERD/ERS values for RTWIN and LTWIN are shown, for alpha and
beta frequency bands and, for RIGHTMI and LEFTMI conditions.

During MI, ERD was observed in twins’ ipsilateral and contralateral central
EEG channels (C3 and C4) in both alpha and beta. RIGTHMI observed in alpha
and beta was the task which presented less differences between twins’ corti-
cal activations, with no significant differences observed in any region. Central
regions’ activations (C3 and C4) were significantly different between twins
across more comparisons (LTWIN dominant vs. RTWIN non-dominant in
alpha and beta, and LTWIN dominant vs. RTWIN dominant in alpha), with
the LTWIN presenting more pronounced ERD across these comparisons.

Figure 3. Topographic brain maps computed from movement tasks in offline sessions.
RTWIN’s and LTWIN’s ERD/ERS are shown. Blue and red tones show a decrease or increase
in power, respectively, during movement tasks (4–7 s) compared to the REST period (0–
3 s). EEG channels’ that presented significant differences after multiple comparison cor-
rection are shown under the connecting lines.
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Online quantitative EEG measurements

Figure 5 shows topographic brain maps for ERD/ERS information extracted
from online RIGHTMI trials. EEG channels with statistically significant ERD/
ERS differences between RTWIN and LTWIN are shown for alpha and beta fre-
quency bands, and for visual and somatosensory feedbacks.

During online RIGHTMI with both visual and somatosensory feedbacks, C3
was the only central channel for which significant different ERD/ERS were
observed. Compared to the RTWIN dominant MI, LTWIN non-dominant MI pre-
sented more pronounced beta ERD in C3 with the visual feedback, and the
LTWIN also presented more pronounced alpha and beta ERD in C3 with the
somatosensory feedback.

BCI performance

Selected CSP filters used for feature extraction of the RTWIN’s RIGHTMI, were
comprised by four pairs of filters, with two filter pairs for extracting EEG fea-
tures from 8 to 12 Hz, one pair for 16–20 Hz, and one pair for the 24–28 Hz
band. For LTWIN’s RIGTHMI, CSP filters were comprised by five pairs, with
three filter pairs for 8–12 Hz, one pair for 16–20 Hz and one pair for 28–
32 Hz. Table 3 shows the number of correct and incorrect trials computed
for visual and somatosensory feedbacks. Percentage of correct trials are also

Figure 4. Topographic brain maps computed from MI task in offline sessions. EEG chan-
nels’ significant differences after multiple comparison correction are shown.
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stated. With the visual feedback, LTWIN’s number of correct trials was signifi-
cantly (p < .05) higher than RTWIN’s. With the somatosensory feedback
LTWIN’s number of correct trials was also significantly (p < .05) higher than
RTWIN’s. Statistical power computed for the tests between RTWIN and
LTWIN with visual and somatosensory feedbacks were of 91% and 94%,
respectively.

The cross-validation tests showed that the regression models with lower p-
values were the ones that associated a more pronounced beta ERD in C3, with
higher BCI performance, and the models’ coefficients ranged from −1.21 to
−1.52. The RMSE of the models’ predictions with the cross-validation analysis

Table 3. Results of BCI performance.
Visual Chi-squared test

for visual

Somatosensory Chi-squared test for
somatosensoryRTWIN LTWIN RTWIN LTWIN

Number of
incorrect trials

61 43 p < .05 31 14 p < .05

Number of correct
trials

59 77 89 106

Percentage of
correct trials

49.2% 64.2% 74.2% 88.3%

Notes: Number of incorrect, correct, and percentage of correct trials computed for RTWIN and LTWIN for
somatosensory and visual feedbacks are shown. The p-values of comparisons between RTWIN and
LTWIN number of correct trials with both feedbacks are shown.

Figure 5. Topographic brain maps computed from online MI sessions, with visual and
somatosensory feedback. Blue and red tones show a decrease or increase in power,
respectively, during RIGHTMI tasks (4–7 s) compared to the REST period (0–3 s). EEG
channels’ significant differences, after multiple comparison correction are shown.
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was of 6.2. The permutation test implied that a p-value lower than .0206, was
necessary to assess the reliability of the linear model at a .05 confidence level.
Equation (2) shows the linear model computed using the whole dataset with
the lowest p-value, as recommended by Draper and Smith (2014). The model
had a statistical significance of p = .008 for prediction of twins’ BCI perform-
ance variability (adjusted R2 = 0.97)

%CT = − (1.3[−1.8, − 0.7]) (C3b)+ 49.2, (2)

where %CT is the percentage of correct trials for online BCI performance as
observed in Table 3. C3β is the median ERD/ERS in the beta frequency of
the left central EEG channel, computed from twins’ online sessions during
RIGHTMI. The model’s only coefficient was −1.3, while its confidence interval
ranged from−1.8 to−0.7 (shown in brackets) is zero non-inclusive, suggesting
that beta ERD in C3 is relevant for prediction of %CT. The model implied that a
more pronounced beta ERD in C3 (a negative value of C3 is equivalent to ERD)
during RIGHTMI, can be associated with a higher BCI performance with both
feedbacks. The intercept term of 49.2 indicates that if the twins did not elicit
beta ERD/ERS in C3, then only a 49.2% of trials would be correctly recognized
by the BCI processing stage, which is below the practical level of chance. Since
the obtained model had a significance (p = .008) lower than the required by
the permutation test (p = .026), it could be inferred that the model was reliable
for predicting %CT.

Discussion

Total intracranial (1.5%), brain segmentation (0.12%), and grey matter
volumes (1.67%) did not differ considerably between both twins since this
difference was lower than the ones reported by Pol et al. (2002); if mean differ-
ences of total intracranial volume (1.79%), brain segmentation (1.08%) and
grey matter (2.28%) are computed from their observations between pairs of
female monozygotic twins. Twins’ dominant hemisphere’s cortical volumes
did not differ considerably, therefore, it can be implied that twins’ dominant
motor regions had similar anatomic features. The subcortical structures that
presented the most pronounced differences between twins were the ventri-
cles. Although it has been hypothesized that asymmetries in ventricles struc-
tures’ volumes can be related with handedness (Erdogan, Dane, Aydin,
Özdikici, & Diyarbakirli, 2004), a lack of such association has also been
suggested (Guadalupe et al., 2017), and the precise functions of these struc-
tures are still not completely understood (Mortazavi et al., 2014). Furthermore,
regression analyses implied that none of the subcortical brain structures that
presented asymmetries between twins could be associated with BCI perform-
ance. Therefore, it can be suggested that twins’ BCI performance differences
were not likely related with anatomical brain asymmetries between twins.

16 R. I. CARINO-ESCOBAR ET AL.



Twin’s discordant handedness was confirmed by the Edinburgh inventory.
The KVIQ questionnaire’s scores seem to imply that both twins have an
average to above-average ability to perform visual and kinesthetic MI.
However, RTWIN’s scores were significantly higher than LTWIN’s for the
kinesthetic scale and were not significantly different for the visual scale.
This suggested that RTWIN had more ability to perform kinesthetic MI
than LTWIN and, that both twins have the same ability to perform visual
MI. Offline and online quantitative EEG measurements seem to confirm
that both twins do have the ability to elicit ERD on central EEG channels.
In case of the online measurements, ERD was also observed for both
visual and somatosensory feedbacks. However, BCI performance measure-
ments show that LTWIN’s performance was higher than RTWIN, for both
visual and somatosensory feedbacks, which is contrary of what could be
expected from the KVIQ scores. This could be explained by the moderate
and weak correlations found between KVIQ scores and performance using
a MI-based BCI, reported by Vuckovic and Osuagwu (2013). In addition,
Rimbert et al. reported a lack of association between a MI questionnaire
and hand MI-based BCI performance (2019). Therefore, the present study
further implies that subjective questionnaires such as the KVIQ, cannot accu-
rately predict MI-based BCI performance.

Offline and online qEEG measurements showed that twins elicited acti-
vations over the sensorimotor cortex during movement and hand MI tasks.
These activations are the most reported during hand movement-related
tasks, which implied that twins could elicit activations associated with hand
movement or MI. During twins’ dominant hand movement tasks, activation
differences between twins were observed among most cortical regions.
However, during dominant hand MI tasks, activations’ differences were
observed in a lower number of regions. This could imply that handedness
affected cortical activations in a smaller degree during MI tasks compared
to movement tasks, in the observed monozygotic twin model. This is in line
with the observations of Shironouchi et al. reporting more pronounced corti-
cospinal excitability effects of movement compared to MI in healthy subjects
(2019). Also, the fact that twins’ left sensorimotor regions presented signifi-
cant different cortical activations across most comparisons must be empha-
sized. This suggested that the dominant hemisphere of the RTWIN and non-
dominant of the LTWIN elicited different cortical activations among tasks,
which could be expected from discordant handedness. However, unlike the
expected scenario, in which the RTWIN should have shown more pronounced
contralateral cortical activations during dominant MI tasks compared to the
LTWIN (while this twin performed non-dominant MI tasks), the LTWIN had
more pronounced activations. A possible explanation for this could be that
some left-handers develop, due to environmental pressure, better coordi-
nation of their non-dominant upper limb compared to right-handers, as
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hypothesized by Przybyla et al. (2012). Another possibility, in case of online
tests, is that the LTWIN cortical activations were reinforced in a greater
degree by the visual and somatosensory feedback provided by the BCI
system, since feedback has shown to aid users in generating more pro-
nounced cortical activations in alpha and beta during MI (Cantillo-Negrete,
Carino-Escobar, Carrillo-Mora, Barraza-Madrigal, & Arias-Carrión, 2019;
Gomez-Pilar, Corralejo, Nicolas-Alonso, Álvarez, & Hornero, 2016; Neuper,
Scherer, Wriessnegger, & Pfurtscheller, 2009).

Online BCI performances showed that for both visual and somatosensory
feedbacks LTWIN’s performances were significantly better than RTWIN’s.
This was unexpected, and contrary to the hypothesis of the RTWIN achieving
higher performances, since the BCI was driven by RIGHTMI, the non-dominant
hand of LTWIN. A possible reason for these differences in performance could
be implied by the linear model that best fitted BCI performance. The model
implied a strong association between beta activations in LTWIN non-domi-
nant hemisphere, and RTWIN dominant hemisphere, with BCI performance.
The model’s reliability was tested, and is in line with the study of Blankertz
et al., which also suggested a predictor of MI-based BCI performance, that
associated more pronounced ERD in the contralateral somatosensory cortex
regions during hand movement-related tasks, with higher BCI accuracies in
a large sample of healthy subjects (2010). In addition, in the present study
the other studied variables derived from MI questionnaires, subcortical struc-
tures’ volumes, and ERD in alpha or in other regions in beta, did not contrib-
uted to improving the model’s prediction of BCI performance. Therefore,
although an association between brain structures and different regions’ acti-
vations in alpha and beta could still be possible, at least with the studied twin
model, BCI performance seemed to be mostly associated with beta activations
in the sensorimotor area. On the other hand, performance of both twins using
the visual feedback was lower than with the somatosensory feedback. This
could have been caused by the closer resemblance of somatosensory feed-
back to real movement, which could have helped the twins generate more
pronounced ERD activations than with visual feedback. Vukelic and Gharaba-
ghi also reported higher performances with somatosensory feedback in a
hand MI-based BCI compared to visual feedback, in a sample of healthy sub-
jects (2015).

The present study has limitations that must be acknowledged. Firstly, since
only a right-hand orthosis was available for the study, RIGHTMI was evaluated
during online BCI control, while the effects of the LTWIN performing dominant
hand MI and the RTWIN non-dominant hand control were not online assessed.
Although offline comparisons between LTWIN dominant MI and RTWIN non-
dominant MI suggested somatosensory cortex activation differences between
twins, the lack of online comparisons during this condition does not allow to
further confirm these observations during online BCI control. Furthermore,
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this limitation of the study design did not allow to assess the relationship
between cortical activations during twins’ left-hand MI with BCI performance,
which could have provided more insights of the role of handedness in BCI
control with the studied twin model. Also, a higher sample of twin pairs
would be needed to further evaluate the effects of handedness in the per-
formance of a MI-based BCI. In addition, although the twin model allows to
reduce variability between individuals, it does not guarantee an absence of
individual differences in cortical activations caused by factors such as motor
learning. These individual differences could have contributed to the observed
asymmetries in cortical activations and BCI performances between twins.
Finally, the limited time window of the experiment, 2-day sessions of online
control, could be too small to assess the effect of BCI feedback and training,
in left and right handers’ ability to elicit cortical activations during hand MI,
since higher degrees of control and changes in cortical activations during
MI have been previously reported within longer BCI training sessions
(Carino-Escobar et al., 2019; Irimia, Ortner, Poboroniuc, Ignat, & Guger, 2018).

To the authors’ knowledge, this is the first study reporting BCI perform-
ances, qEEG measurements, neuropsychological tests and brain volumes
between hand discordant monozygotic twins. BCI performance differences
suggested that in the analysed case study, the twin driving the system with
non-dominant MI achieved higher accuracy. This was probably associated
with more pronounced cortical activations in the non-dominant hemisphere
of this twin during MI. Therefore, BCI performance could be more associated
with laterality-related physiological asymmetries, compared to results of sub-
jective tests for MI assessment and anatomical brain asymmetries.

Conclusions

The present work analysed a case study of discordant handedness and its
effect in BCI performance using hand MI. Results showed, that in the analysed
case study, hand dominance was a feature that did not limited BCI perform-
ance, since the twin with handedness opposite to the hand MI required to
control the system, achieved better performances. This was attributed to a
higher ability of the left-handed twin in eliciting more pronounced cortical
activations in central EEG channels during hand MI. Although the present
study’s limitations, such as it being a case study, does not allow to infer
general conclusions of the role of handedness in BCI performance, these
observations justify and could provide a starting point for further research.
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