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Abstract 

Objective. As one of the commonly used control signals of brain-computer interface (BCI), 

steady-state visual evoked potential (SSVEP) exhibits advantages of stability, periodicity and 

minimal training requirements. However, SSVEP retains the non-linear, non-stationary and 

low signal-to-noise ratio (SNR) characteristics of EEG. The traditional SSVEP extraction 

methods regard noise as harmful information and highlight the useful signal by suppressing 

the noise. In the collected EEG, noise and SSVEP are usually coupled together, the useful 

signal is inevitably attenuated while the noise is suppressed. Besides, an additional band-pass 

filter is needed to eliminate the multi-scale noise, which causes the edge effect. Approach. To 

address this issue, a novel method based on underdamped second-order stochastic resonance 

(USSR) is proposed in this paper for SSVEP extraction. Main results. A synergistic effect 

produced by noise, useful signal and the nonlinear system can force the energy of noise to be 

transferred into SSVEP, and hence amplifying the useful signal while suppressing multi-scale 

noise.The recognition performances of detection are compared with the widely-used 

canonical coefficient analysis (CCA) and Multivariate synchronization index (MSI). 

Significance. The comparison results indicate that USSR exhibits increased accuracy and 

faster processing speed, which effectively improves the information transmission rate (ITR) 

of SSVEP-based BCI. 

Keywords: brain-computer interface, steady-state visual evoked potential, canonical coefficient analysis, multivariate 

synchronization index, underdamped second-order stochastic resonance 

1. Introduction 

The brain-computer interface (BCI) can transform human 

thinking activities into relevant control commands and 

establish direct communication between the human brain and 

the external environment [1,2]. This technique provides a new 

method to communicate with the outside world for patients 

who have lost muscle control functions [3-5]. Recently, the 

BCI has become a research hotspot in the fields of 

rehabilitation and biomedical engineering. 

Associated with physiological activities of the brain, EEG 

can be affected by cognitive activities, environmental stimuli 

and self-regulation of biological tissues, it exhibits non-linear, 

non-stationary characteristics [6]. The difference in the 

transmission path from EEG, EMG, EOG and ECG to their 
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sensors causes the amplitude of EEG to remain in the range of 

μV, whereas the amplitudes of the other three bioelectric 

signals are in the range of mV [7-9]. The singal sources of 

EMG and ECG are far from the scalp, so EOG is the main 

bioelectric siganl artifact. Meanwhile, limb shaking and 

baseline drift can also result in high-intensity, low-frequency 

noise [10,11]. In addition, in the process of signal acquisition, 

EEG is inevitably accompanied by power frequency 

interference, electrostatic interference and electromagnetic 

interference. Thus, the recorded signal is always mixed with 

high-frequency interferences. The low-frequency such as 

EOG, limb shaking and baseline drift and high-frequency 

interferences constitute the multi-scale noise, which makes 

EEG have an extremely low signal-to-noise ratio (SNR). 

Many EEG signals can be used as control signals for BCI 

systems, which include miniature event-related potentials 

(ERPs), event-related desynchronization (ERD), P300 and 

steady-state visual evoked potential (SSVEP) [2,12,13]. With 

frequency ranging from 5 Hz to 80 Hz, SSVEP is a group of 

specific EEG evoked in the occipital lobe of the brain after 

visual stimulation [14,15]. This signal has the advantages of 

stability, periodicity and minimal training requirements, and 

thus, SSVEP-based BCI is widely used as a communication 

paradigm [16-18]. 

Currently, most SSVEP extraction methods regard noise as 

a harmful signal and improve the detection ability of weak 

signal by suppressing noise [19]. The power spectrum (PS) 

method [20-22] employs Fast Fourier Transform (FFT) to 

calculate the energy of a particular frequency component. 

Then, the power of a certain frequency of spontaneous EEG is 

used as a threshold for the corresponding SSVEP detection in 

evoked EEG. This method has low complexity and high 

computational efficiency, but the frequency resolution is 

limited by the sampling time and the required data length 

usually lasts a few seconds. In 2007, Canonical Correlation 

Analysis (CCA) [23], which calculates a correlation 

coefficient between the EEG and a series of stimulus 

harmonics, was applied to SSVEP extraction. CCA overcomes 

the dependence of frequency resolution on sampling time and 

reduces the required data length. However, the sensitivity of 

the correlation coefficient to the initial phase of SSVEP makes 

it necessary to increase the acquisition channel to maintain the 

stability of this method. Unlike CCA, Multivariate 

Synchronization Index (MSI) [24] uses the synchronization 

between the actual mixed signals and the reference signals as 

a potential indicator for identifying the feature frequency of 

SSVEP. It establishes the s-estimator as an index based on the 

entropy of the normalized eigenvalues of the correlation 

matrix of multivariate signals. This method is a non-linear 

measurement method that avoids the loss of useful 

information caused by the linear combination of multi-channel 

signals. By maximizing the reproducibility of time-locked 

activities across trials, the Task-related component analysis 

(TRCA) method showed good performance in extracting task-

related components. Nakanishi [25] first applied this method 

to the extraction of SSVEP feature frequencies. The SNR of 

the SSVEP is enhanced by removing the background EEG 

activities, thereby the recognition accuracy of the feature 

frequency is improved. Independent Component Analysis 

(ICA) [7,8,26] has also been used to isolate SSVEP from 

evoked EEG, but the low temporal resolution makes it 

unsuitable for real-time systems. To address the obstacles 

encountered by conventional approaches in single electrode 

EEG signal co-channel interference suppression, a method 

based on time-frequency image dimensionality reduction was 

proposed by Wang [5]. In addition, many other methods are 

also applied to SSVEP extraction, such as Autoregressive 

(AR) model parameter estimation [27], the Stability 

Coefficient (SC) method [28] and the Reconstruction 

Extraction (RE) method [29].  

All of these methods can extract information contained in 

EEG and reflect a certain SSVEP detection capability, 

however, none of these models can avoid the following 

problems. (1) To eliminate the multi-scale noise contained in 

the EEG, it is necessary to select a suitable band-pass filter. In 

this way, the edge effect of the filter greatly reduces the 

effective data length and significantly increases the detection 

time. In addition, the adaptive matching of the filter's trial 

band with the signal's feature frequency also needs to be 

considered. (2) If extracting SSVEP with obvious nonlinear 

and non-stationary characteristics by suppressing the noise, 

the useful signal is also attenuated or lost while the noise is 

suppressed. When the stability of the evoked signal is 

insufficient, the suppression of useful signal can even far 

exceed the suppression of noise. Therefore, the information 

contained in the original EEG cannot be completely utilized, 

which seriously affects the detection sensitivity and 

recognition accuracy. 

Since it was proposed by Benzi et al. in 1981, stochastic 

resonance (SR) has become a hot research topic in the field of 

nonlinear signal processing [30,31]. In contrast to traditional 

weak signal detection methods, SR can exploit the energy of 

noise to enhance the weak useful signal through a nonlinear 

system [32,33]. To resolve these two issues, this study seeks 

to use the nonlinear processing method to extract the feature 

frequency of SSVEP. To obtain the noise-enhanced SSVEP, 

the pre-processed signal with a certain intensity of noise is sent 

into the corresponding model to conduct stochastic resonance 

processing. Then, the power spectrum of the output signal is 

calculated to identify the feature frequency. Subsequently, the 

recognition frequency is matched to all stimulus frequencies 

to determine whether the feature frequency of the SSVEP is 

successfully extracted. CCA and MSI can make full use of 

multi-channel EEG information and has strong recognition 

stability, therefore, the experiment procedure is simplified and 

the subject-specific training is avoided. Thus, they have 
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become the most commonly used SSVEP extraction methods. 

Therefore, to investigate the performances of the proposed 

method, CCA , MSI and two different stochastic resonance 

methods are used to extract SSVEP with different feature 

frequencies. The comparison results indicate that 

underdamped second-order stochastic resonance (USSR) 

exhibits increased recognition accuracy and faster processing 

speed, reflecting the superiority of nonlinear methods in EEG 

processing. 

The remainder of this paper is organized as follows: Section 

2 analyzes the output response of two stochastic resonance 

models and then illustrates the SSVEP extraction based on the 

nonlinear stochastic resonance in detail. In section 3, the 

proposed method is applied to extract the feature frequency of 

SSVEP to verify the effectiveness of the method. The 

recognition effect and processing performances of each 

method are discussed in section 4. Finally, Conclusions are 

provided in section 5. 

2. Methods 

2.1 Ethics statements 

Six males and five females (20-27 years old) participated 

in this experiment. The subjects had normal or corrected 

normal visual acuity. This study was approved by the Human 

Research and Ethics Committee of the Xi'an Jiaotong 

University. Before the experiment, all the subjects were told 

the purpose and procedure of the experiment in detail and 

signed a consent form. These forms were approved by Xi'an 

Jiaotong University Ethics Committee Data Acquisition. 

2.2 Stimulus design 

The sampled sinusoidal stimulation method [18,34] was 

used in this study to present visual flickers on a computer 

monitor. In this method, the stimulus sequence ( ),s f i

corresponding to frequency f can be generated by modulating 

the luminance of the screen, and the expression of ( ),s f i is as 

follows: 

 ( ) ( ) 
1

, 1 sin 2
2

s f i f i refreshrate= +      (1) 

where sin()  generates a sine wave, and i  indicates the 

frame index in the stimulus sequence. The dynamic range of 

the stimulation signal is from 0 to 1, where 0 represents dark 

and 1 represents the highest luminance. 

2.3 Data acquisition 

This study performed a simulated BCI experiment to record 

data for offline analysis. Our BCI design utilized the motion 

checkerboard [35] patterns to construct visual stimulus and 

displayed them on 21" EIZO FlexScanT966 CRT monitor 

with a high refresh rate (setting 100 frames/s, measured ~98 

frames/s) and a resolution of 1280×800 pixels. The outer 

diameter of motion checkerboard pattern in our experiment 

was set at 100 pixels and the inner diameter was set at 20 

pixels. The amplitude of expansion-contraction motion 

process was set at 5 to 15 pixels and the width of one pixel 

was 0.31 mm. As shown in Figure 1, the stimuli were arranged 

in a 4×6 matrix containing 24 stimulus tagets (the stimuli were 

divided into 4 lines, each line includeed 6 targets). Besides, all 

the targets were tagged with different frequencies (the 

stimulus frequency range was 5.2-14.4Hz, and the frequency 

interval was 0.4Hz). The horizontal and vertical intervals 

between two neighbouring stimuli were 4 cm and 3 cm, 

respectively.  

 
Figure 1 The user interface of the 24-target BCI system 

EEG signals were referenced to a unilateral earlobe, 

grounded at frontal position (Fpz), and sampled at 1200 Hz 

using a g. USBamp (g.tec Inc., Austr ia) system. Six electrodes 

sites (OZ, O1, O2, POZ, PO3 and PO4) closer to the occipital 

lobe were selected to record SSVEP. To remove the common 

power-line noise, a notch filter at 50 Hz was applied in data 

recording.  

Event triggers that indicate the onsets of visual stimuli were 

sent from the parallel port of the computer to the EEG system 

and recorded on an event channel synchronized to the EEG 

data. Experiments were performed in a quiet and ordinarily 

lighted room with no electromagnetic shielding. All subjects 

were seated in a comfortable chair 70 cm in front of the LCD 

monitor. They were asked to stare at the target stimulator and 

not to track the movement of the stimulator with their eyes. 

Each stimulus was applied within a 100-pixel-diameter ring. 

Twenty four trials corresponding to 24 frequencies were 

performed. During the experiment, subjects were asked to 

gaze at the motion checkerboard with different stimulation in 

turn. The stimuli on the monitor lasted for 5s and then 

disappeared, the next stimulation was perforned after 1s (the 

stimulation time of each trial is 5s and the time interval 

between two trials is 1s).  

2.4 Methodology 

Stochastic resonance is a typical nonlinear method that 

subverts people's perception of noise [36]. The basic idea of 
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SR is to make the weak signal, stochastic noise and a nonlinear 

system produce a synergistic effect by adjusting the intensity 

of noise and system parameters, forcing the energy of the 

noise to be transferred into the useful signal and hence 

suppressing the noise and amplifying the weak signal. 

2.4.1 Bistable stochastic resonance  
As the most widely studied model, bistable stochastic 

resonance (BSR) can be described by the long-range equation 

obtained by neglecting the inertia force of the motion 

differential equation of Brownian particles [37]. 

 ( ) ( )3dx
ax bx s t t

dt
= − + +   (2) 

The corresponding potential function of the bistable system 

is noted as follows: 

 ( ) ( ) ( )( )2 42 4U x ax bx x s t t= − + − +   (3) 

where a and b are the system parameters and satisfy

,a b R+ , ( ) ( )cos 2s t A ft= represents a deterministic 

periodic excitation signal, ( )x t is the output signal of the 

bistable system, ( )t represents Gaussian white noise and 

satisfies the statistical mean and autocorrelation function as 

follows:  

 ( ) 0t =   (4) 

 ( ) ( ) ( )2t t D    + =   (5) 

where . denotes the expectation operator,  is the delay 

time, D is the noise intensity, and ( )t represents the unit 

pulse function.  

The traditional SR is based on the theory of adiabatic 

approximation [38-40], which requires that the input 

frequency of the system is far less than 1. To achieve high-

frequency signal stochastic resonance, Leng [41] put forward 

the concept of “large parameter variable scale stochastic 

resonance”. The purpose of variable substitution is achieved 

by adjusting the step of the numerical calculation. The driving 

frequency in the differential equation after transformation is 

reduced to satisfy the conditions with small frequency 

parameters. Increasing the step can obtain a larger 

instantaneous moving distance and make the output of the 

system more easily cross the potential barrier. However, 

blindly increasing the step will cause the output to diverge, 

resulting in detection distortion. To ensure that the output 

converges, the system parameters and calculation step must 

satisfy the following constraint [42]: 

 ( )0

1
2

2
ah and x ah bh  +   (6) 

where
0x represents the initial value of the system, h is the 

calculation step for solving differential equation. 

2.4.2 Underdamped second-order stochastic resonance 
BSR ignores the inertia term and normalizes the damping 

factor. The corresponding Langevin equation belongs to 

overdamped first-order differential equation. However, the 

inertia and damping can also influence the output of nonlinear 

system. Considering the above two factors, the Langevin 

equation evolves into the second-order differential equation 

[43]. The nonlinear system composed of second-order 

differential equation is called the underdamped second-order 

stochastic resonance (USSR) model. The differential equation 

for the USSR model is as follows: 

 
( )

( ) ( )
2

3

2

dU xd x dx dx
ax bx s t t

dx dt dtdt
  = − − = − − + +   (7) 

where a and b are the system parameters and satisfy

,a b R+ , 0 1   denotes the damping factor,

( ) ( )cos 2s t A ft = + represents a deterministic periodic 

excitation signal, and D is the noise intensity. 

Substituting the expression of ( )s t into the above equation 

yields the following expression: 

 ( ) ( )
2

3

2
cos 2

d x dx
ax bx A ft t

dtdt
   = − − + + +   (8) 

2.4.3 Effects of damping factor on USSR output  
To discuss the effect of damping factor on the output of 

USSR, here we consider a pure sinusoidal signal as the input 

signal and its parameters, including amplitude A ,frequency f

, noise intensity D , system parameters ,a b , sampling 

frequency fs , sampling time t . The output responses of the 

system under different damping factors are presented in Figure 

2. 

 
Figure 2 USSR output signal with different damping factors. Input amplitude

1A= , frequency 0.05f Hz= , noise intensity 0.1D = , system parameters

1a b= = , sampling frequency 100fs Hz= , sampling time 60t s= . 

When the damping factor is small, a large random 

fluctuation appears in the output signal. The random noise 

plays a leading role in this process. As the damping factor 

increases, the ripple in the output signal is gradually 

suppressed, and the system response effect is improved. 

However, excessive damping factor will make the system 
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output unable to keep up with the change of the input signal 

during the transferring process. The amplitudes of the noise 

and the driving signal will be largely attenuated, causing the 

distortion of output signal. Therefore, for different input 

signals, there is an optimal damping factor that allows the 

USSR system to achieve the best filtering performance. 

2.5 Stochastic resonance output frequency response 

2.5.1 Output frequency response comparison of BSR 

and USSR 
To measure the effect of stochastic resonance, an effective 

fitness function needs to be defined. For periodic signals with 

a known driving frequency, SNR is the most commonly used 

method to measure the stochastic resonance effect. SNR is the 

ratio of the spectral amplitude of the driving frequency to that 

of the noise, and the definition is as follows: 

 

/2

10

1

10log
N

d i d

i

SNR A A A
=

  
= −  

  
   (9) 

where 
dA  is the amplitude of the driving frequency in the 

output signal spectrum, N represents the sum of all the 

spectrum lines in the spectrum of the output signal, and
iA is 

the amplitude corresponding to each frequency component in 

the output signal spectrum. 

The frequency response (FR) of BSR and USSR output 

signals under different system parameters using SNR as the 

fitness function are presented in Figure 3. 

 
Figure 3 Output frequency responses of BSR and USSR. Input signal 

amplitude 1A= , noise intensity 2D = , sampling frequency 1.2fs KHz= , 

sampling time 2t s= , damping factor =0.15 , numerical calculation step

1/10h = , driving frequency range: 3~300Hz . 

As the driving frequency increases, the SNR of the BSR 

output signal decreases monotonously, revealing the 

characteristic of low-pass filtering. However, the output FR of 

the USSR is no longer a monotonic function of the driving 

frequency. As the driving frequency increases, the SNR of the 

USSR first increases and then decreases, which is similar to a 

group of band-pass filters. BSR can only remove high-

frequency noise to retain low-frequency signals. On the 

contrary, the USSR is equivalent to a secondary filtering of 

the BSR output signal, which can eliminate the multi-scale 

noise. All of these features suggest that USSR is more suitable 

for the actual engineering signals. 

2.5.2 Effects of step on the system output frequency 

response 
The variable scale detection method can change the 

instantaneous moving distance by changing the instantaneous 

excitation length acting on the system output. Thus, the 

calculating step determine whether the output can pass the 

potential barrier and achieve the transition between the two 

potential wells. Therefore, with different calculation steps, the 

output FR of the same SR model will be different. Thus, it is 

necessary to clarify the relationship between the step size and 

the output FR of BSR and USSR. Using the same simulation 

parameters employed in the previous section, the output FR of 

the two SR models with steps of 1/5, 1/10, and 1/20 are 

presented in Figure 4. Table 1 shows the feature frequencies 

and bandwidth of the equivalent filter corresponding to 

different steps (where
sf represents the cut-off frequency,

cf

denotes the center frequency, and bw indicates the passband 

bandwidth). 

 
Figure 4 Output frequency responses of BSR and USSR with different 

calculation steps. 

Table 1 Equivalent frequency response parameters of BSR and USSR with 

different steps. 

Step BSR(Low-pass filter) USSR(Band-pass filter) 

1/5 sf =33Hz cf =41, bw =76Hz 

1/10 sf =21Hz cf =20Hz, bw =30Hz 

1/15 sf =16Hz cf =15.5Hz, bw =20Hz 

1/20 sf =11Hz cf =11Hz, bw =10Hz 

1/25 sf =7Hz cf =10.5Hz, bw =6Hz 

As the step size increases, the cut-off frequency of BSR 

gradually increases, and the passband range is widened. For 

USSR, the equivalent center frequency and bandwidth of the 
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output FR also have a positive correlation with the step of the 

numerical calculation. This phenomenon reveals that the step 

of the numerical calculation determines the filtering range of 

the SR model. Practically, we need to select the best matching 

step according to the frequency range of the signal to achieve 

a better stochastic resonance effect. 

2.6 SSVEP extraction method based on nonlinear 

stochastic resonance 

In general, the best stimulus frequency range for SSVEP-

based BCI is 5-30 Hz [44,45]. To improve the recognition 

accuracy, a traditional band-pass filter needs to be used to 

eliminate the multi-scale noise beyond the frequency band. 

The output FR of USSR is equivalent to a nonlinear band-pass 

filter. Besides, the passband frequency range and cut-off 

frequency can be set in advance by adjusting the step of 

numerical calculation. Therefore, SSVEP extraction based on 

USSR not only directly suppresses multi-scale noise but also 

effectively avoids the edge effect and adaptive parameter 

selection of the traditional filter. Thus, this paper proposes a 

novel SSVEP extraction method.  

 

 
Figure 5 Flowchart of SSVEP extraction based on nonlinear stochastic resonance. 

The new method only requires a single channel EEG. To 

make full use of the useful information contained in the six 

channels, principal component analysis (PCA) is used to 

reduce the dimensionality. When the number of channels is 

reduced, the stability of the signal is not guaranteed, and the 

useful information cannot be completely retained. The 

flowchart of the proposed method is illustrated in Figure 5. 

Detailed procedures are listed as follows: 

(1) Invalid data truncation. Subjects' attentiveness often 

cannot be completely concentrated during the initial 

experiments. The data collected in the first 0.5 seconds 

typically do not have a stable SSVEP, which will affect the 

recognition of target frequencies and need to be removed. 

(2) Multi-channel signal dimensionality reduction. To 

completely utilize the information contained in each channel, 

PCA is used to reduce the dimensionality of multi-channel 

signals. 

(3) Parameter initialization. It is necessary to set the 

appropriate parameters (model parameters a and b , damping 

factor  , noise intensity D , numerical calculation step h , and 

the maximum peak order N that needs to be identified) 

according to the characteristics of collected signals and actual 

analysis needs. 

(4) Stochastic resonance processing. The pre-processed 

signal and a certain intensity of noise are sent to the 

corresponding model to perform stochastic resonance 

processing. Then, the power spectrum of the noise-enhanced 

SSVEP is calculated to identify the target frequency. 

(5) Peak frequency identification. The feature frequency 

corresponding to the n-th main peak from the power spectrum 

of the output signal obtained in step (4) is extracted. 

(6) Frequency matching detection. The recognition 

frequency is matched to all stimulus frequencies. If the match 

is successful, the target frequency is effectively identified. If 
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the match fails, it is necessary to detect whether the current 

identified order is greater than the set maximum order. If the 

termination condition is satisfied, then the test is terminated, 

indicating that the target frequency identification fails. 

Otherwise, the calculation returns to step (5). 

3. Results 

The previous sections demonstrate that SR has a strong 

nonlinear detection ability and can use the energy of the noise 

to highlight useful weak signal. Therefore, nonlinear 

stochastic resonance is applied for SSVEP extraction. To 

verify the effectiveness of the proposed method, the same 

EEG signals were identified by CCA, MSI and two different 

SR methods.  

3.1 Application of CCA and MSI in SSVEP extraction 

Limited by the length of the paper, one subject's offline data 

was randomly selected for processing to demonstrate the 

recognition effect of the four methods. The stimulus frequency 

of the date set was 5.2-14.4Hz, and the frequency interval was 

0.4Hz. Meanwhile, Each group of date consists of six channels 

of signals with the sampling frequency of 1200Hz. First, CCA 

is used to extract SSVEP, and a butterworth filter with the 

passband range of 4-31Hz is needed to eliminate the multi-

scale noise. The correlation coefficient spectrums between the 

filtered EEG and the template signals (the template signal 

refers to a set of standard sinusoidal signals with known 

frequencies used to identify the SSVEP feature frequency by 

CCA and MSI) are presented in Figure 6.  

For most (71%) EEG, the target frequency can be 

effectively identified by the CCA method (the coefficient 

value is greater than 0.4, and there are no large interference 

peaks). However, the coefficients corresponding to the four 

frequencies of 9.2 Hz, 11.6 Hz, 12.8 Hz and 14 Hz (the CCA 

spectrum denoted by green boxes) are no longer the maximum 

value in the CCA spectrum. Thus, the target frequency 

identification fails. The coefficients corresponding to the three 

frequencies of 12 Hz, 12.4 Hz and 13.6 Hz (the CCA spectrum 

denoted by orange boxes) are the maximum values in the 

entire spectrum. However, several interference peaks whose 

values are very close to the maximum value are presented in 

the correlation coefficient spectrums, making the recognition 

effect unsatisfactory.  

The MSI method extracts the feature frequency of the 

SSVEP by estimating the synchronization of the actual mixed 

signals and the reference signals. It can achieve a nonlinear 

combination of multi-channel signals to extract more useful 

information. To verify the recognition effect, the MSI method 

is used to identify the feature frequencies of the same band-

filtered EEG, and the synchronization index spectrums of 24 

groups of signals are shown in Figure 7. 

It can be found that for frequencies that can be correctly 

identified by CCA, MSI can increase the amplitude difference 

between the feature frequency and other frequencies, so that 

the feature frequency is further highlighted. For the two 

frequencies 9.2Hz and 11.6Hz (the index spectrum denoted in 

green boxes)that cannot be identified by the CCA, the MSI 

also failed to extract the feature frequencies. However, the 

synchronization indexs corresponding to 12.8Hz and 14Hz 

(the power spectrum denoted in red boxes) becomes the 

maximum values in the synchronization index spectrums, 

which means that the two feature frequencies are correctly 

identified. On the other hand, since the MSI does not have a 

good inhibitory effect on the interference peaks, the 

synchronization index of 12.4 Hz is submerged in the 

interference peaks, and the feature frequency extraction fails. 

3.2 Application of BSR and USSR in SSVEP extraction 

To verify the advantages of stochastic resonance in SSVEP 

feature extraction, the weak signal detection method based on 

BSR is applied to extract the target frequencies of SSVEP. To 

satisfy the small parameter requirement, it is necessary to 

adjust the step size of the numerical calculation. As shown in 

Table 1, when the sampling frequency is 1.2 kHz, the cut-off 

frequency of the equivalent low-pass filter of BSR has a 

negative correlation with the calculation step. The analysis 

frequency range is 5.2-14.4Hz in our experiment, which 

matches the passband range corresponding to the step of 1/10. 

Thus, the calculation step is set as 1/10.  

The 24 sets of signals are first subjected to stochastic 

resonance processing. Then, the FFT is used to calculate the 

power spectrum of the noise-enhanced signals with the data 

length of 5 s. Figure 8 shows all the power spectrums of the 

BSR output signals. 

Compared with Figure 5 , the three target frequencies of 9.2 

Hz, 11.6 Hz and 14 Hz cannot be effectively identified by 

BSR. In addition, the corresponding power spectrum of 12.8 

Hz still has several interference peaks, but the amplitude of the 

target frequency has been clearly highlighted. However, the 

interference peaks corresponding to 12 Hz and 12.4 Hz are 

effectively suppressed, and the recognition effect of the two 

frequencies are enhanced. At the same time, affected by the 

randomness of this algorithm, the target frequencies are 

completely submerged by the interference peaks when the 

stimulus frequencies are set as 13.2 Hz and 13.6 Hz. 

Extracting SSVEP by BSR, the interference peaks around 

the stimulation frequency are significantly inhibited. BSR can 

improve the identification effect of the target frequency to a 

certain extent and reflect the validity of nonlinear stochastic 

resonance in extracting SSVEP. However, for the 

unrecognized signals of CCA, BSR also cannot effectively 

extract useful information and the number of identification 

errors increases. As discussed in section 2.5, USSR is 

employed to perform secondary filtering on the output of BSR, 

and the filtering effect is improved from low-pass filtering to 

band-pass filtering. Thus, using this method to process the 
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EEG should yield a better recognition effect. The original 

EEG is subjected to the same pretreatment and fed into a non-

linear, second-order underdamped system. Similarly, 

considering the equivalent filtering range obtained in Table 1, 

the numerical calculation step is set as 1/10, and the damping 

factor is set as 0.85. The power spectrums of USSR output 

signals are presented in Figure 9.  

Compared with BSR, the effect of USSR on EEG 

recognition has been greatly improved. For the signals with 

large interference peaks around the target frequency, the 

interference frequencies are more obviously suppressed. In 

addition, the dominance of the target frequency in the power 

spectrum is further highlighted (the power spectrum denoted 

in blue boxes). The more gratifying phenomenon is that for 

the unidentifiable signals using both CCA, MSI and BSR, 

USSR can also effectively identify the corresponding target 

frequencies (the power spectrum denoted in red boxes). In the 

power spectrum corresponding to 9.2 Hz, 12.8 Hz and 13.6 

Hz, the amplitudes of the target frequency have exceeded the 

amplitude corresponding to the interference peaks. In the 

spectrum corresponding to 13.2 Hz and 14 Hz, although the 

amplitudes corresponding to the target frequencies are not the 

maximum values of the spectrum, they have also been 

strengthened to become the second peak or the third peak. At 

the same time, the frequencies corresponding to the first peak 

and the second peak (5.4 Hz and 5.8 Hz, respectively) are not 

matched with all the stimulation frequencies used in the 

experiment. Therefore, post-treatment can be used to 

eliminate the interference peaks with amplitudes greater than 

the target frequency and effectively identify the stimulus 

frequencies of SSVEP. 

The above analysis demonstrates that the weak signal 

extraction based on USSR has a high degree of matching with 

non-linear EEG. This method uncovers the information that 

can’t be extracted by CCA, MSI and BSR, thereby effectively 

improving the recognition accuracy. 

 

 
Figure 6 The CCA coefficient spectrums of EEG signal and template signal. 
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Figure 7 The synchronization index spectrums of EEG signal and template signal. .

3.3 Processing performances comparison 

The information transmission rate (ITR) expresses the 

amount of information transmitted in a unit of time. It is a 

commonly used indicator to measure the performance of the 

BCI system. ITR can be calculated by: 

 ( )2 2 2

60 1
log log 1 log

1
ITR M

T M


  

 −  
= + + −   

−  
  (10)  

where T  is the sum of stimulation time of each trial and 

the time interval between two trials (according to Section 2.3, 

the value of T  in this experiment is 6s), M  is the number of 

targets, and   is the average recognition accuracy. 

Using the same stimulus paradigm, the factors affecting the 

TTR are not exclusively determined by recognition accuracy, 

the calculation speed also needs to be considered [46]. In 

addition to the hardware device (signal acquisition system and 

computer response speed), the complexity of the relevant 

extraction method is the most important factor that restricts the 

BCI online processing capabilities.  

To further compare the processing performances, the 

offline data sets of the remaining ten subjects (each data set 

contains 24 experimental data) were also identified by the 

above four methods. The recognition accuracy, single 

stimulation processing time, and ITR of each subject were 

calculated respectively, and then the average of each 

performance was obtained. The correct rates for every subject 

using the CCA, MSI, BSR and USSR methods are presented 

in Figure 10 and Table 2 shows the average processing 

performances of the four methods.  
Table 2 Comparison of the processing performance of the four algorithms. 

Performance Correct rate Processing time  ITR  

CCA 84.47% 0.82s 32.60 bit/min-1 

MSI 85.98% 0.44s 33.66 bit/min-1 

BSR 80.30% 0.14s 29.79 bit/min-1 

USSR 94.70% 0.15s 40.46 bit/min-1 

For the same EEG, four methods are used to extract the 

feature frequencies. Using CCA to identify the feature 

frequencies of 11 subjects, the average correct rate was 

84.47%, the processing time was 0.82s, and the ITR was 

32.60bit/min-1. The correct rate of MSI was slightly improved 

to 85.98%, the corresponding processing time was 0.44s, and 
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the ITR was 33.66bit/min-1. The processing performances of 

BSR were 80.30%, 0.14s, and 29.78bit/min-1, respectively. 

For USSR, these performances were increased to 94.70%, 

0.15s, and 40.46bit/min-1. Compared with CCA and MSI, the 

USSR method exhibits increased recognition accuracy and 

reflects the strong non-linear detection ability. On the other 

hand, the processing speed of the proposed method increases 

by four-fold, and the online processing capability is also 

significantly improved. Therefore, under the same stimulus 

paradigm, the USSR-based SSVEP extraction method can 

achieve increased ITR. 

 

 
Figure 8 The power spectrums of bistable stochastic resonance output signal.

4. Discussion 

When dealing with EEG, the current methods have the 

problem that signal characteristics do not match with the 

processing method, and the useful signal is subsequently 

suppressed as noise. To preserve more information contained 

in the original EEG, the non-linear processing method is 

applied to extract SSVEP. SR uses the synergy caused by 

noise, useful signals, and a nonlinear system to transfer the 

energy of noise into the useful signal. This method can 

preserve and highlight the useful information as much as 

possible. 

To clarify the output responses of different models, the 

SNR is employed as the fitness function, and the output FR 

under different system parameters are obtained. The results 

indicate that the output response of BSR is equivalent to a set 

of nonlinear low-pass filters, which cannot suppress the multi-

scale noise. Considering the influence of the damping term 

and inertial term on the output of the system, USSR is 

equivalent to the secondary filtering of the output signal of 

BSR. Hence, the output signal is smoother and the filtering 

effect is also improved from low-pass to band-pass. Therefore, 

USSR is more suitable to extract SSVEP from a nonlinear 

EEG. 

By processing the same EEG with CCA, MSI, BSR, and 

USSR, we found that large interference peaks may exist 

around the feature frequency in the CCA coefficient 

spectrums. When the evoked signal quality is poor, and the 

amplitudes of interference peaks even exceed the amplitude of 

the feature frequency, resulting in identification errors. MSI 

retains more useful information contained in the original EEG 

by implementing a nonlinear combination of multi-channel 
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signals. Compared with CCA, the recognition accuracy is 

slightly improved. However, this method still treats noise as 

unwanted information and suppresses noise through 

traditional filters. The SNR of SSVEP has not been improved, 

so there are still some interference peaks around the target 

frequency. BSR can significantly suppress the interference 

peaks around the target frequency. However, for the 

unrecognized signals of CCA and MSI, BSR also cannot 

effectively extract useful information, and the number of 

identification errors increases due to the randomness of the 

method. USSR not only has a more prominent interference 

peak suppression effect but also further enhances the energy 

of the target frequency. By matching the target frequency with 

the stimulus frequencies, the signals that cannot be extracted 

by CCA and BSR can be effectively identified. On the other 

hand, compared with CCA, the algorithm complexity has also 

been greatly reduced. Therefore, USSR can improve the 

processing speed by four-fold and demonstrates a strong 

online processing capability. 

In our experiment, the stimulus frequency range is 5.2-

14.4Hz, which matches the passband range corresponding to 

the step of 1/10. Therefore, the step is usually set to 1/10. 

However, it doesn’t mean that the proposed method presents 

a limitation on the SSVEP frequency. When the stimulus 

freqnencies change, the step size can also be adjusted to adapt 

to the new frequency range. Besides, all parameter selections 

in this paper are based on experience. Figure 2-4 are obtained 

by simulation signals. The purpose is to clarify the basic laws 

of damping factor, step size on the output of stochastic 

resonance system, and provide guidance for the actual EEG 

signal processing. For system parameters, the actual strategy 

is to fix a, b, and only adjust D to achieve better stochastic 

resonance effect. According to the experience of parameter 

adjustment, the recognition effect is ideal when the damping 

factor is set to 0.82-0.87. This selection strategy separates 

these parameters and ignores the interaction between different 

parameters, which limits the further improvement of the 

SSVEP recognition effect. Constructing a suitable fitness 

function to achieve adaptive selection of USSR multi-

parameters will be the core issue that needs to be solved in the 

future. 

 
Figure 9 The spectrum of underdamped second-order stochastic resonance output signal. 
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Figure 10 The correct rates resulting from the CCA, MSI, BSR and USSR for every subject. 

5. Conclusion 

To address the shortcomings that useful information is 

seriously damaged when signal features do not match with the 

processing method and that the use of traditional filters will 

cause the edge effect, a novel SSVEP extraction method based 

on nonlinear stochastic resonance is proposed. Through 

experimental verification, we found that BSR can effectively 

suppress the interference peaks around the target frequency. 

However, the output FR of the BSR is low-pass and cannot 

suppress multi-scale noise. On the other hand, the output FR 

of USSR is similar to a set of nonlinear band-pass filters. After 

secondary filtering, the output signal is smoother and the 

suppressing effect of interference peaks is enhanced. 

Moreover, the energy of the target frequency is further 

amplified, significantly improving the recognition effect of 

the target frequency. Thus, compared with CCA and MSI, 

USSR exhibits increased accuracy and faster processing 

speed, effectively improving the ITR. All of these features 

suggest that the USSR method is more suitable for the real-

time BCI system. 
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