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Abstract— This work presents an implementation of Error-
related Potential (ErrP) detection to produce progressive adap-
tation of a motor imagery task classifier. The main contribution
is in the evaluation of the effect of vibrotactile feedback on
both ErrP and motor imagery detection. Results confirm the
potential of self-adaptive techniques to improve motor imagery
classification, and support the design of vibratory and in general
tactile feedback into Brain-Computer Interfaces to improve
both static and adaptive performance.

I. INTRODUCTION
The development of Brain-Computer Interfaces (BCIs)

offered the possibility to provide a non-muscular channel
for communication and control to people with severe mo-
tor disabilities [1]. The need of a portable and acceptable
technology for the patients boosted the interest towards non-
invasive BCIs, mainly relying on electroencephalographic
(EEG) signals. In this context, different adaptive signal
processing approaches were developed, aiming at improving
the system’s performance and robustness, thus allowing BCIs
effective integration into current Assistive Technologies [2].

One of the limitations of EEG-based BCIs focusing on
voluntary control, e.g. motor imagery (MI), is related to
the non-stationarity of data, which leads to a decrease in
performance from the training to the testing phase. In order
to overcome this problem, many approaches have been
proposed based on adaptive classification: assuming that the
labels of incoming trials are known, it was proven that proper
updates in classifier parameters can improve the performance
of the static classifier [3]. In a real BCI application, though,
user intention, corresponding to the class label, is usually
unknown. One interesting approach to cope with this lack
of knowledge is to exploit the same neural channel both for
extraction of an active control signal (the output of the BCI
classifier) and for retrieving information on user’s awareness
of a misinterpreted intention. The latter can be achieved by
detecting a passive EEG feature, the so called Error-related
Potential (ErrP), which is evoked in user’s fronto-central
activity, and has been proven to be detectable on a single-
trial basis with a sufficiently high (approximately 80%)
accuracy [4]. Since ErrP is an evoked potential, contrary
to sensorimotor rhythms exploited to detect motor imagery,
features allowing its detection are quite stationary over
time. This characteristic makes it suitable to be exploited
in a reinforcement learning framework, to improve the per-
formance of an adaptive classifier used for the detection

1Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa,
Italy (email: lucia.schiatti@iit.it).

2Biomedical Robotics Lab, Department of Advanced Robotics, Istituto
Italiano di Tecnologia, Genoa, Italy.

EEG signals 

ErrP static 
classifier 

Motor imagery Error 

t(s) 

𝑡  

Feedback 

Correct 
(𝑡 = 𝑡) 

Erroneous  
(𝑡 ≠ 𝑡) 

User’s intention 

left /right MI 

MI adaptive 
task classifier 

𝐸  

Adaptation 

∆𝑤𝑖 update if 𝐸 = 1  

𝐸 

𝑡 

Fig. 1: Scheme of the MI adaptive classifier’s functioning. EEG signals are
used both to extract an active control signal from a motor imagery task
(green phase), and a passive information (Error) on user’s evaluation of the
MI classifier’s output, after feedback is provided (orange phase). The output
of a static ErrP classifier is then used to update the MI adaptive classifier’s
parameters.

of the active EEG pattern, i.e. the one underlying motor
imagery. This concept was implemented by [5], on magneto-
encephalographic (MEG) data recorded during a two-class
covert attention paradigm, with potential applications in BCI
tasks, like mental typewriting [6].

In the present work, the method proposed by [5] was
applied to EEG data recorded during a four-classes motor
imagery task, as shown in Fig. 1. During the experiment, a
classification feedback was simulated by means of a virtual
cursor movement shown after each motor imagery phase, in
order to collect a realistic dataset for both motor imagery
and ErrP detection. Only data related to left and right hand
motor imagery were considered in this preliminary study,
in a binary task classifier implementation. In the described
setting, ErrP detection greatly depends on how feedback
is designed. Previous studies supported the evidence that
using a tactile feedback channel to close the control loop
between user and the assistive interface/device, can greatly
improve MI-based BCIs performance [7]–[9]. Following this
approach, this study presents an evaluation of the effect of
tactile feedback on both static and adaptive motor imagery
classification and on ErrP detection. Given the high subject-
specificity of features related to motor imagery, a within-
group experimental design was chosen to evaluate the effect
of a different feedback. Each subject repeated the experiment
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in two different conditions, (i) with visual and (ii) with visuo-
tactile stimulation during motor imagery (user’s intention)
and feedback phases (see Fig. 1).

II. METHODS AND MATERIALS

A. Adaptive Classification

The adaptive classifier implemented in this study was
introduced by [5], and proved to be effective in improving the
binary classification of left and right hand motor imagery on
MEG data. The working principle of this adaptive algorithm
is based on the updating of the MI classifier’s parameters
when an error is detected after the MI task classification.

Specifically, labeling as t ∈ {0,1} the true target class,
i.e. left or right, corresponding to subject’s intention, the
output of the MI task classifier can be denoted as t̃. From
the computational point of view, a logistic regression model
is used to compute t̃, in terms of the probability:

p(t = 1|x,w) = σ(x,w) =
1

1 + e
−

n∑
i=0

wixi

(1)

where x = (x1, ..., xn) is a vector of feature values
extracted from the user’s EEG activity, which is relevant
to discriminating between the two considered classes. The
vector w ∈ Rn+1 is the vector of weights, with x0 = 1
accounting for the bias term. The output of the MI task clas-
sifier is defined by the function: t̃ = χ

(
(t = 1|x,w) > 1

2

)
,

where χ returns 1 if the argument is true, and 0 otherwise.
The learning rule for the classifier parameters w consists

of an update of w in the direction of the gradient of the
prediction error, quantified by the log-likelihood function:

∆wi =
∂G(x,w, t)

∂wi
= η(t− σ(x,w))xi (2)

where η is the learning rate. In a real system, the subject’s
real intention t is unknown. Updates ∆wi occur only when
the static ErrP classifier detects an error (Ẽ = 1), in which
case it can be assumed that the observed output t̃ is incorrect,
and t = 1 − t̃. Therefore, the learning rule for the adaptive
MI classifier can be written as:

∆wi = ηẼ(1− t̃− σ(x,w))xi (3)

Ideally, if the static ErrP classifier had a perfect behavior
(i.e. the output Ẽ is always corresponding to the perceived
error E), the learning would happen only when true errors,
i.e. true positives (TP), are detected at the output of MI task
classification. In practice, the performance of the adapting
rule is affected by false positives (FP), i.e. correct trials
wrongly detected as erroneous, which cause the MI classifier
to learn from incorrectly labeled data, and false negatives
(FN), i.e. erroneous trials wrongly classified as correct,
preventing the algorithm from performing a correct update.

B. Experimental protocol

The experimental protocol was designed in order to
simulate errors made by a BCI in recognizing subject’s
intents during a bi-dimensional control task. Six healthy
subjects (27.7±4.6 y.o., all males) participated in the study,
after agreeing with the experiment’s guidelines, and signing
an informed consent document1. Subjects did not actually
control the interface, rather they performed a four-classes
motor imagery task (both hands, right hand, feet, left hand),
with the goal of moving a virtual cursor in one of the four
directions (up, right, down, left). Each trial encompassed a
fixation cross appearing in a black screen (1.5 s), followed by
a green arrow pointing in one of four directions, indicating
to the subject which motor imagery task to perform (see
Fig. 1). A red dot superposed to the fixation cross was also
shown, simulating a virtual cursor. The MI task lasted for 4
s, and it was followed by a feedback simulating the result
of MI classification, presented for 2 s after a break of 1
s (black screen). The feedback consisted in the movement
of the red cursor in either the direction pointed by the
arrow (correct trial) or one of the other three directions
(erroneous trial), with 40% of error rate. The experiment was
repeated by each subject in two conditions: either receiving
only visual feedback (V) as described above, or a visuo-
tactile feedback (VT). The latter consisted of a vibrotactile
stimulation provided by means of bands placed on the wrists
an ankles, for the entire duration of the motor imagery task
(4 s), and for 1 s starting from the feedback presentation,
according to the cursor movement. Vibrations on both wrists,
right wrist, both ankles and left wrist were provided for up,
right, down, and left directions respectively. Each experiment
encompassed 8 sessions (half in V and half in VT condition).
Only trials related to left hand and right hand MI were
considered in the present study, leading to around 45 trials
per session for each subject.

C. Experimental setup

The experimental setup consisted of 20 active gel elec-
trodes (g.LADYbird from g.tec) located at F1, Fz, F2, FC3,
FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3,
CP1, CPz, CP2 and CP4 according to the standard 10/20
international system. Ground and reference were respectively
placed on the forehead (AFz) and left ear lobe. Electrode
locations were chosen in order to cover the motor cortex
area where changes related to movement imagination are
known to happen, and in the frontal area for error potential
detection. Experiments were started only after impedance
of all electrodes was stably under 5 kΩ. EEG signals
were acquired using a g.USBamp biosignal amplifier at a
sampling frequency of 512 Hz. The graphical protocol was
developed in Matlab, while data acquisition occurred through
a Simulink model that handled the g.USBamp amplifier. Four
custom-made silicone rubber (ACC Silicone M230) cuffs

1IIT ADVR TEEP01 protocol, approved by the Ethical Committee of
Liguria on June 14th, 2016.
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Fig. 2: Static classification results (averages among subjects) comparing V and VT conditions. On the left (a) ErrP classification accuracy, αn and αp; on
the right (b) MI classification accuracy in different time windows (TW). On each box, the central mark indicates the distribution median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. The outliers are plotted individually (’+’ symbol).

with embedded vibration motors (Precision Microdrives 304-
116) were cast in order to provide tactile stimuli. Control
occurred through serial communication, implemented over a
direct USB connection2.

D. ErrP classification

For ErrP classification, EEG data was spatially filtered by
means of common-average re-referencing (CAR), then band-
pass filtered between 1 and 10 Hz with a 4th order Butter-
worth filter, since EEG error correlates are known to be slow
potentials. Time windows of length 1 s were extracted from
recorded data, starting from feedback presentation. Both time
and frequency features were extracted and used for ErrP
classification. Time features were obtained by sub-sampling
signals to 64 Hz. Frequency analysis was performed selecting
non-overlapping 0.5 Hz-wide power spectrum bands between
1 and 10 Hz, after applying the FFT. Features were ranked
by means of z-score, and only features with score above the
threshold of 0.25 were selected. A Support Vector Machine
(SVM) with second order polynomial kernel was used for
classification, using a leave-one-out cross validation proce-
dure. These classification results, in terms of false negative
and false positive rate (αn and αp) were then used for the
adaptive MI classification, to simulate the output of the static
ErrP classifier and the functioning of the updating algorithm
in realistic conditions for each subject.

E. MI task classification

For the MI task classification, data was filtered between
8 and 30 Hz with a zero-phase FIR filter of order 20, and
spatially filtered by means of small Laplacian [10]. Seven
partially overlapping (overlap 0.5 s) time windows (TW )
of 1 s length were extracted starting from each trial in the
interval 1.5-5.5 s, corresponding to the MI task. Log band-
power features were then computed in each TW , considering
the three 4 Hz frequency bands: 8-12 Hz, 12-16 Hz, 16-20
Hz. For static MI classification, the logistic regression model
presented in Eq. 1 was used, exploiting a 10-fold cross-
validation scheme. For adaptive MI classification, data from

2Open hardware haptic-driver shield and open source firmware available
at: https://github.com/mrkaroshi/haptic_shield.

the first session was used as training set, while data from the
remaining three sessions was used as testing set (to simulate
a realistic scenario). The training set was exploited to select
the 10 most significant features based on the z-score, and
to compute the initial weights values for the logistic regres-
sion model. The value of static MI classification accuracy
was used as ground-truth to evaluate the adaptive classifier
performance. This latter was implemented using the same
logistic regression model, starting from the weights values of
the static MI classifier tuned on the training set, and applying
the learning rule in Eq. 3 to update classifier’s weights after
each new testing example.

III. RESULTS AND DISCUSSION

A. ErrP classification

In Fig. 2a results related to static ErrP classification
accuracy are reported, for the V and VT conditions. A mean
accuracy of 0.7 is obtained in both cases, regardless of
the presence of tactile feedback. This result differs from
what was obtained in previous works [11], in which an
improvement in ErrP detection was observed when tactile
feedback was used. Such an observation could be motivated
by different factors. The first one is the fact that in the present
experiment, differently from the cited one, the task is bi-
dimensional, so three different actions can be considered as
an error after each trial. Another reason for the ineffective-
ness of tactile feedback on ErrP classification could be the
high error ratio (40%), that in general could lead to worse
detection accuracy. The αn and αp are slightly higher than in
[5] (see Table I), probably due to the lower ErrP classification
performance. Furthermore, the αp is greater than αn for
almost all subjects. This is an undesirable condition, since
FP cause a wrong update of the classifier’s parameters.

B. MI task static classification

Fig. 2b shows results related to static MI classification, in
terms of accuracy for each subject and time window, for V
and VT feedback conditions. When only visual feedback is
provided, the mean accuracy among all subjects and TW is
generally close to the chance level, with top results (0.65
and 0.70) between 1 and 2.5 s after the stimulus onset.
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TABLE I: Change in classification accuracy (∆A%) from static to adaptive
classifier, in V and VT conditions, in case of ideal 100% ErrP accuracy
(∆Ai), and for real values of FN rate (αn) and FP rate (αp), ∆Ar .

V VT
Subj. αn αp ∆Ai ∆Ar αn αp ∆Ai ∆Ar

S01 0.26 0.47 14% 6% 0.29 0.36 8% 5%
S02 0.39 0.46 4% 3% 0.27 0.39 13% 7%
S03 0.16 0.15 9% 6% 0.09 0.24 9% 10%
S04 0.31 0.37 9% -1% 0.15 0.32 9% 4%
S05 0.22 0.42 14% 7% 0.38 0.41 6% 8%
S06 0.25 0.30 13% 4% 0.23 0.34 9% 0%

Adding a tactile stimulation during motor imagery increases
the classification accuracy of 2% to 28% on average.

To statistically evaluate the effect of feedback, a 2x7
within-subjects design was adopted. The first within factor is
constituted by the 2 levels of absence/presence of feedback
(V/VT), while the second one represents the 7 levels of
repeated measures. Being the ANOVA assumptions checked,
no significant effect of the 7 repeated measures was observed
- F (6, 30)=1.468 with p=0.223 - and a significant effect of
the feedback was found - F (1, 5)=12.16 with p=0.0175 - as
expected according to the research hypothesis. The signifi-
cant improvement observed in MI classification in presence
of tactile feedback leads to another consideration about the
absence of the same result on ErrP classification. Indeed,
the use of an identical kind of feedback (only differing in its
duration) could not be appropriate in order to simultaneously
enhance the detection of an active and a passive feature. A
different feedback design could be necessary to draw more
solid conclusions to this regard.

C. MI task adaptive classification

To quantify the performance improvements achievable
in a real setting, the adaptive classification accuracy was
computed considering FP and FN ratios previously assessed
for each subject. The adaptive classification was computed
in the TW with the best adaptive behavior (maximum
improvement in classification accuracy, compared to the
static classification), and suitable learning rate η (values
chosen between 0.01 and 0.45) for each subject and for
both conditions V and VT. Table I reports changes in
classification performance (∆Ar), and the comparison with
values achievable in an ideal setting. i.e. 100% of ErrP
detection accuracy (∆Ai). The adaptive algorithm allows
for a MI classification performance improvement ranging
from few percentage points to 14% in the ideal case. These
values decrease when taking into account the FP and FN rate.
While no significant difference is observed among results
in the ideal conditions for V and VT conditions (∆A=10%
on average), the decrease of performance occurring in the
realistic case is generally lower for VT condition. These
results may suggest that the addition of tactile feedback,
beside the beneficial effect on MI detection, could also
increase the benefits of adaptive techniques. Further analysis
on a larger sample of subjects will be necessary to assess
whether the addiction of tactile feedback could also stabilize
relevant features across sessions.

IV. CONCLUSIONS

This work evaluated the impact of designing tactile vi-
bratory feedback into a BCI architecture for adaptive motor
imagery classification based on ErrP detection. Static clas-
sification results confirmed and extended previous literature
findings on benefits coming from the integration of haptic
biofeedback in MI-based rehabilitation and neuroprosthetic
control. Further investigation will be needed to evaluate if
tactile feedback could help in generating MI features that
are more stationary over time, thus allowing a better perfor-
mance of adaptive algorithms for automatic MI classifier re-
tuning. To improve the adaptive classification results, more
complex classifiers, such as recurrent neural networks, will
be exploited in the next step of this study to implement
the explicit update rule. Differently from previous work, the
addition of vibratory feedback did not result in an improved
ErrP detection. To clarify this point, future work will be
devoted to test alternative feedback designs, differentiating
the tactile stimulation provided during the active control (MI)
and feedback (ErrP) phases.
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R. Leeb, et al., “Combining brain–computer interfaces and assistive
technologies: state-of-the-art and challenges,” Frontiers in neuro-
science, vol. 4, 2010.

[3] P. Shenoy, M. Krauledat, B. Blankertz, R. P. Rao, and K.-R. Müller,
“Towards adaptive classification for bci,” Journal of neural engineer-
ing, vol. 3, no. 1, p. R13, 2006.

[4] R. Chavarriaga, A. Sobolewski, and J. del R Millán, “Errare machinale
est: The use of error-related potentials in brain-machine interfaces.”
Frontiers in Neuroscience, vol. 8, 2014.

[5] A. Llera, M. A. van Gerven, V. Gómez, O. Jensen, and H. J. Kappen,
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