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a b s t r a c t 

Motor imagery (MI)-related brain activities can be effectively described by frequency analysis. Bispectrum 

is developed to overcome the drawback of power spectrum that the estimation of power spectrum dis- 

cards the phase relationship among frequency components. However, the widely used bispectral features 

extraction method adds up all bispectral values as one feature, which could lead to the loss of effective 

information and increase of the sensitivity to non-linear and non-Gaussian noises. Thus, the represen- 

tative bispectral features extraction method may be inefficient for MI classification. In addition, recent 

research suggests that the variations of EEG signals could provide more useful underlying information 

of event-related brain responses. This paper presents an advanced variations based bispectral feature ex- 

traction method to improve the performance of MI classification. The proposed method calculates the 

variations of MI-related EEG signals as input to bispectrum estimation. Besides, a new segmented bis- 

pectral sum features are developed to reduce the influence of non-linear and non-Gaussian noises and 

emphasize the valuable information for MI classification. The dataset collected in our laboratory and BCI 

Competition IV dataset 2b were adopted to validate the proposed method. The results indicate that the 

proposed method outperforms the power spectrum based methods and the representative bispectral fea- 

tures based methods. Moreover, compared to other state-of-the-art works, our approach also achieves the 

greater performance for MI classification. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Brain-computer interface (BCI) technology is dedicated to help

atients with brain diseases, such as Amyotrophic lateral sclerosis

ALS), cerebral palsy, and motor neurons disease (MND). Thanks

o the advantages of non-invasion, convenience, low cost, and low

ower consumption, Electroencephalogram (EEG) is universally ap-

lied as a collection method for BCI system ( Allison, Wolpaw,

 Wolpaw, 2007; Wolpaw, Birbaumer, Mcfarland, Pfurtscheller, &

aughan, 2002 ). In practice, based on event-related synchroniza-

ion (ERS) and event-related desynchronization (ERD) phenomena,

esearchers can analyze and recognize motor imagery (MI)-related

EG signals. ERD/ERS is induced by the execution or imagination of

ovement, and both phenomena represent as the changes in oscil-

atory EEG power. Hence, ERD/ERS can be characterized with tem-

oral or frequency analysis thereby classifying MI tasks ( Neuper &

furtscheller, 2001 ). 
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Common Spatial Pattern (CSP) algorithm constructs an op-

imal spatial filters and extracts the temporal features of spa-

ial patterns in different MI tasks ( Ang, Chin, Zhang, & Guan,

008 ). Zhang et al. (2018) applies CSP to extract temporal features

nd combines a multi-kernel Extreme learning machine (MKELM)-

ased method to classify MI tasks. Alvarez-Meza, Velasquez-

artinez, and Castellanos-Dominguez (2015) makes use of CSP

nd motor imagery discrimination using feature relevance anal-

sis (MIDFR) to improve the performance of MI classification.

SP algorithm is relied heavily on its operational frequency band.

herefore, using CSP features may lead to poor results when

I-related EEG signals are filtered inappropriately ( Ang, Chin,

ang, Guan, & Zhang, 2012 ). As another temporal features ex-

raction method, Hjorth algorithm is also used for MI classifi-

ation frequently ( Gandhi, Prasad, Coyle, Behera, & McGinnity,

015 ). However, ERD/ERS phenomena may be insufficiently rep-

esented with temporal analysis, but could be detected by fre-

uency analysis ( Pfurtscheller & Lopes da Silva, 1999 ). Power spec-

rum based frequency methods are commonly adopted to extract

I-related features. Specifically, Herman, Prasad, McGinnity, and

oyle (2008) extracts power spectral density (PSD) features and

ses linear and nonlinear classifier to classify the MI tasks of left

nd right hands. Saa and Çetin (2012) utilizes Burg’s method to

https://doi.org/10.1016/j.eswa.2019.04.021
http://www.ScienceDirect.com
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estimate power spectrum features, and employs a hidden con-

ditional random field method to enhance MI classification accu-

racy (CA). However, by the reason of the non-linearity and non-

Gaussianity of EEG signals, traditional power spectrum technique

is limited for the analysis of MI-related EEG signals. Since power

spectrum discards the information of the phase relationship among

frequency components, it cannot extract the useful non-linear and

non-Gaussian information for MI classification. Bispectrum is pro-

posed to solve the problem of power spectrum. Bispectrum can

quantify the interaction of two frequency components in a non-

linear and non-Gaussian signal, thus it can unearth more non-

linear and non-Gaussian features from MI-related EEG signals.

Zhou, Gan, and Sepulveda (2008) estimates the sums of power

spectrum and sum of logarithmic amplitudes of bispectrum for

two classes MI classification. Shahid and Prasad (2011) normal-

izes the sum of logarithmic amplitudes of bispectrum and adopts

Fisher’s Linear Discriminant Analysis (LDA) classifier to discrimi-

nate the MI tasks of right and left hands. However, the representa-

tive bispectral feature extraction method used in above works adds

up all bispectral values as one feature, so it could reduce the va-

lidity of a classifier and deteriorate the performance of MI clas-

sification. Moreover, since the sensitivity to non-linear and non-

Gaussian noises could be highly enhanced within one bispectral

feature value ( Chella, Marzetti, Pizzella, Zappasodi, & Nolte, 2014 ),

the representative bispectral feature extraction method could be

seriously contaminated by non-linear and non-Gaussian noises. On

the other hand, although event-related potentials (ERPs) show the

differences in peak and amplitudes, the differences in undergoing

temporal superimposed undulations and additional local changes

of ERPs may more accurately reflect underlying brain activities

( Klein & Skrandies, 2017 ). Hence, compared to ERPs themselves,

the variations of ERPs could provide more valuable information re-

garding MI-related brain activities. 

In light of Klein and Skrandies (2017) , we present an advanced

features extraction method, called variations based segmented bis-

pectrum sum (VSBS), to enhance the separability of bispectral

features. The proposed method calculates the variations of raw

EEG signals to extract more underlying temporal information for

MI classification, and then estimates the sums of segmented bis-

pectrum to reduce the influence of non-linear and non-Gaussian

noises. Next, an optimal bispectral segment length is learned from

labeled training data with a fivefold cross-validation to improve

the performance of MI classification. The proposed VSBS method

was applied on the dataset collected in our laboratory and BCI

competition IV dataset 2b. The results demonstrate surpassing per-

formance compared to the PSD based methods and representa-

tive bispectral feature based methods. Furthermore, our method

also yields the best results compared to other state-of-the-art

works. 

The rest of this paper is organized as follows: Section 2 intro-

duces the related researches and Section 3 describes the proposed

VSBS method. Experiments materials and data processing are de-

tailed in Sections 4 and 5 , respectively. Section 6 illustrates the ex-

perimental results. Finally, the discussion and conclusions are out-

lined in Sections 7 and 8 . 

2. Related research 

2.1. The definition of the cumulants and bispectrum 

Higher order spectra (HOS) serves to reveal the interaction

between the frequency components of a non-linear and non-

Gaussian signal, and it includes higher order cumulants and their

spectra. 

By assuming a series of n real random variables { x 1 , x 2 , · · ·,
x n }, the order r = r + r + · · · + r n cumulants of this series are
1 2 
efined as 

 r 1 r 2 ···r n 
�= (− j) 

r ∂ 
r ln �( w 1 , w 2 · · · w n ) 

∂ w 

r 1 
1 
∂ w 

r 2 
2 

· · · ∂w 

r n 
n 

∣∣∣∣
w 1 = w 2 = ···= w n =0 

, (1)

here 

( w 1 , w 2 · · · w n ) = E{ exp [ j( w 1 x 1 + w 2 x 2 + · · · + w n x n ) ] } . (2)

The N th-order spectrum S N ( w 1 , w 2 , · · ·, w N − 1 ) is calculated as

he Fourier Transform (FT) of the N th-order cumulants c N ( τ 1 , τ 2 , · · ·,
N − 1 ), and the formula is presented as: 

 N ( w 1 , w 2 , · · ·, w N−1 ) = 

+ ∞ ∑ 

τ1 = −∞ 

· · ·
+ ∞ ∑ 

τN−1 = −∞ 

c N ( τ1 , τ2 , · · ·, τN−1 ) 

· exp { − j( w 1 τ1 + w 2 τ2 + · · · + w N−1 τN−1 ) } . (3)

hen N = 2, the second-order spectrum is calculated as below: 

 2 (w ) = 

+ ∞ ∑ 

τ1 = −∞ 

c 2 (τ ) · exp { − j(wτ ) } (4)

The second-order spectrum is equal to power spectrum while a

ignal x ( n ) is deterministic and zero mean. When N = 3, the third-

rder spectrum, called bispectrum, is computed as follow: 

 3 ( w 1 , w 2 ) = 

+ ∞ ∑ 

τ1 = −∞ 

+ ∞ ∑ 

τ2 = −∞ 

c 3 ( τ1 , τ2 ) · exp { − j( w 1 τ1 + w 2 τ2 ) } . (5)

or a deterministic, zero mean signal x ( n ), its bispectrum can be

xpanded as: 

 3 ( w 1 , w 2 ) = 

+ ∞ ∑ 

τ1 = −∞ 

+ ∞ ∑ 

τ2 = −∞ 

+ ∞ ∑ 

n = −∞ 

x (n ) x (n + τ1 ) x (n + τ2 ) 

· exp { − j( w 1 τ1 + w 2 τ2 ) } . (6)

hen n + τ 1 = m and n + τ 2 = k , then 

 3 ( w 1 , w 2 ) = 

{ + ∞ ∑ 

m = −∞ 

x (m ) e − j w 1 m 

}{ 

+ ∞ ∑ 

k = −∞ 

x (k ) e − j w 2 k 

} 

×
{ + ∞ ∑ 

n = −∞ 

x (n ) e j( w 1 + w 2 ) n 

}
, (7)

nd the bispectrum can be estimated by 

( w 1 , w 2 ) = X ( w 1 ) X ( w 2 ) X 

∗( w 1 + w 2 ) , (8)

here B( w 1 , w 2 ) is the bispectrum in the bi-frequency ( w 1 , w 2 ),

 ( w ) is the discrete time FT of the signal x ( n ), ( ∗) is complex con-

ugate. 

In practice, bispectrum estimation includes two technique, non-

arametric model based on Fourier transformation and parametric

odel based on autoregressive model (AR), moving average (MA),

utoregressive and moving average (ARMA) or Volterra model.

onparametric technique can be employed with direct and indirect

ethods ( Nikias & Raghuveer, 1987 ). Since direct method is eas-

er to implement and less computational cost ( Feng, Si, & Zhang,

011 ), we utilize the direct method of nonparametric technique to

stimate bispectrum in this work. 

The third-order cumulants are identified as skewness of time

eries, and it can segregate Gaussian and non-Gaussian signals for

he reason that the third-order cumulants of Gaussian distribution

s zero ( Feng et al., 2011; Nikias & Raghuveer, 1987 ). Therefore, as

he FT of the third-order cumulants, the bispectrum based method

ould increase signal-to-noise ratio when a signal is contaminated

y Gaussian noises. Moreover, bispectrum technique is able to de-

ect and quantify the quadratic phase coupling (QPC), which is the

nteraction of phases among two harmonic components for a non-

inear and non-Gaussian process( Schwab, Eiselt, Schelenz, & Witte,

005 ). Hence, compared to power spectrum, bispectrum is more

ppropriate to process non-linear and non-Gaussian signals, espe-

ially MI-related EEG signals. 
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Fig. 1. Principal domain ( �) of bispectrum estimation. 
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.2. Bispectrum feature extraction 

The power spectrum of a real-valued signal holds symmetry

ue to the conjugate symmetry of FT. Similarly, the bispectrum of

 real-valued signal also has symmetrical properties as follow: 

 ( f 1 , f 2 ) = B ( f 2 , f 1 ) = B 

∗(− f 1 , − f 2 ) 

= B 

∗(− f 2 , − f 1 ) = B (− f 1 − f 2 , f 2 ) 

= B ( f 1 , − f 1 − f 2 ) = B (− f 1 − f 2 , f 1 ) , 

= B ( f 2 , − f 1 − f 2 ) (9) 

here the f is normalized by the Nyquist frequency. Hence, bis-

ectrum estimation only needs to calculate the bispectral values

n the principal domain (non-redundant area). The principal do-

ain is uniquely defined with a triangle 0 ≤ f 2 ≤ f 1 ≤ f 1 + f 2 ≤
as shown in Fig. 1 and denoted as � ( Collis, White, & Hammond,

998; Nikias & Raghuveer, 1987 ). 

Considering the bispectral amplitudes on the principal domain

an represent phase relationship between two frequency compo-

ents f 1 and f 2 , and between f 1 + f 2 or f 1 − f 2 ( Helbig, Schwab,

eistritz, Eiselt, & Witte, 2006 ), many works propose several bis-

ectral features derived from the moments to detect non-linear

nd non-Gaussian information ( Sahayadhas, Sundaraj, Murugappan,

 Palaniappan, 2015 ). The widely adopted derived bispectral fea-

ure is the sum of logarithmic amplitudes of bispectrum, and its

alculation follows below formula ( Shahid & Prasad, 2011 ): 

 1 = 

∑ 

f 1 , f 2 ∈ �
log ( | B ( f 1 , f 2 ) | ) , (10) 

here the B ( f 1 , f 2 ) is the 2D bispectrum on the principal domain.

ince the representative bispectral features is a bispectrum sum,

e name its features extraction method as a bispectrum sum (ABS)

ethod in this paper. 

. Proposed method 

ABS method is proved effective in machine faults detection

nd classification ( Feng et al., 2011 ), but it may be inefficient for

I classification. Since ABS method produces only one bispectral

eature value, it could deteriorate the performance of a classi-

er. Furthermore, the sensitivity to non-linear and non-Gaussian

oises could be increased within one bispectral feature value, so

he valuable information for MI classification may be fully cov-

red by noises with ABS method. On the other hand, Klein and

krandies (2017) states that the variations of ERPs contain more

nderlying important information of event-related brain dynamics

han ERPs, thus the temporal variations of EEG signal could further

mprove the performance of MI classification. 

Considering above issues, we propose an advanced bispectral

eature extraction method called variations based segmented bis-

ectrum sums (VSBS). In order to extract more useful underlying
nformation for MI classification, the VSBS method uses the vari-

tions of MI-related EEG signals as the input to bispectrum anal-

sis. In addition, the sums of logarithmic amplitudes of bispectral

egments are computed to reduce the influence of non-linear and

on-Gaussian noises, and a weight is assigned to every bispectral

egment to emphasize valuable features for MI classification. The

roposed method is performed as follows steps: 

1) Let x ( n ), n = 1, 2, ���, N is a discrete EEG signal, so the variations

of the EEG signal can be calculated as: 

v (i ) = | x (i + 1) − x (i ) | , i = 1 , · · · , N − 1 . (11)

2) The variations v ( i ) is sent to bispectrum estimation as below: 

VB ( f 1 , f 2 ) = V ( f 1 ) V ( f 2 ) V 

∗( f 1 + f 2 ) , (12)

here VB( f 1 , f 2 ) is the bispectrum of the variations v ( i ), V ( f ) is the

iscrete FT of v ( i ), and f is normalized by the Nyquist frequency. 

3) The 1D horizontal slice of bispectrum on the principal domain

is estimated and divided into segments. Then, the variations

based segmented bispectrum sum of the m th segment is cal-

culated as: 

B m 

= u 

L ∑ 

λ=1 

∑ 

f 2 ∈ �
log ( | V B (λ, f 2 ) | ) , (13) 

u = 

∑ L 
λ=1 

∑ 

f 2 ∈ � log ( | B (λ, f 2 ) | ) ∑ 

f 1 , f 2 ∈ � log ( | B ( f 1 , f 2 ) | ) . (14) 

here L is the length of each bispectral segment, u is the weight

f each bispectral segment. 

4) Through the training data, an optimal bispectral segment length

is learned. After all the sums of bispectral segments are calcu-

lated, the final VSBS feature is presented as a series [ VB 1 , VB 2 ,...,

VB M 

], where M is the number of bispectral segments. 

. Materials and experiment 

.1. Dataset 1 

.1.1. Subjects and equipment 

Five subjects (22–26 years old males) participated in this study,

nd all five subjects are healthy and right-handed. G.tec (Guger

echnologies OEG Austria) BCI device was utilized to collect MI-

elated EEG signals. The EEG signals were recorded from two bipo-

ar electrodes (C3 and C4), and the electrodes scheme were ar-

anged according to the international 10–20 system. The sampling

requency was set to 256 Hz with a notch filter at 50 Hz. The elec-

rode position Fz served as EEG ground. 

.1.2. Experiment protocol 

The subject were guided to perform two MI tasks (the imagi-

ation of left hand and right hand) and asked to relax their arms

nd hands during the experiment (see Fig. 2 a). The collected ex-

erimental data for each subject consisted of two sessions, and the

rst session was selected as training data while the second session

as used as test data. The time scheme of experimental paradigm

s described in Fig. 2 b. Each trial began with a fixation green cross

resented in the center of the screen. After 1 s, a visual cue (an

lack arrow pointing to the left or right) was appeared for 4 s.

uring this 4 s, the subject needed to imagine a movement of left

r right hand by following the direction of the black arrow. A short

reak (less than 4 s) was added after MI period to avoid adapta-

ion. 
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Fig. 2. (a) Experimental setup. (b) Time scheme of the experimental paradigm. 

Fig. 3. Time scheme of the paradigm with smiley feedback. 
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4.2. Dataset 2 

BCI Competition IV dataset 2b is universally used for the re-

search of MI classification. Dataset 2b is provided by the Tech-

nical University of Graz (TUG) and includes two classes MI tasks

involving left and right hands ( Tangermann et al., 2012 ). In this

dataset, the MI-related EEG signals were collected in nine subjects

with three bipolar electrodes (C3, Cz and C4) and were bandpass

filtered between 0.5 Hz and 100 Hz with a sampling frequency of

250 Hz. The EEG electrode Fz served as EEG ground. The data of

each subject contained five sessions, two session without feedback

and three session with feedback. In this paper, the three sessions

with feedback were adopted, and the first session was selected as

training data while the other two evaluation sessions were used as

test data. Moreover, since the EEG electrode Cz is normally utilized

to classify the MI task of foot or tongue ( Morash, Bai, Furlani, Lin,

& Hallett, 2008 ), only the electrodes C3 and C4 were used in our

experiment. 

The time scheme of experimental paradigm is showed in Fig. 3

( Tangermann et al., 2012 ). Each trial began with a fixation cross

and a short beep warning. At second 3, a visual cue (an arrow of

the left or right direction) was showed on the screen. Then, the

subject began to perform MI task over a period of 4 s. A more than

2.5 s break followed after the MI period to avoid adaptation. 

5. Data processing 

5.1. Pre-processing 

In pre-processing stage, raw EEG data was windowed and band-

pass filtered. In order to achieve piecewise stationarity and capture

more rich information for MI classification, we applied a 1 s slid-

ing window with overlap on raw EEG data. Then, every temporal

window was fed to bandpass filters. 

ERD/ERS phenomena normally can be detected in alpha (8–

14 Hz) and beta (14–27 Hz) band over the EEG electrodes C3 and

C4. However, study ( Leocani, Toro, Manganotti, Zhuang, & Hallett,

1997 ) states that ERD/ERS oscillations in gamma (around 40 Hz)

band represent a level of event-related information processing dur-

ing the preparation and execution of MI tasks. Thus, we band-

pass filtered each temporal window at alpha, beta and gamma

bands, which are 8–14 Hz, 14–27 Hz and 27–45 Hz. Moreover, on

the grounds that IIR filter can obtain better response specifications
ith much lower order than FIR filter, we adopted a fourth-order

utterworth bandpass filter to process each temporal window of

aw EEG data and performed filtering in both forward and reverse

irections to ensure the zero-phase distortion. Fig. 4 illustrates the

hole processing steps of raw EEG data. Our experiments were

arried out in MATLAB (R2017b) running on a PC with an Intel

eon E5-2643 @3.40 GHz processor and 128GB RAM. 

.2. Feature extraction and classification 

In the interest of extracting more significant underlying infor-

ation for MI classification, the absolute values of the variations

f each bandpass filtered temporal window were computed (see

q. (11) ) for each subject. Then, the variations of each temporal

indow were sent to bispectrum estimation (see Eq. (12) ). 

In training phase, an optimal bispectral segment length was

earned with training data. First, the 1D horizontal slice of bispec-

rum on the principal domain was estimated, and VSBS features

as extracted by selecting a segment length in a search space (see

qs. (13) and (14) ). The search space is specified from 2 to half of

he length of the 1D bispectral horizontal slice. Second, the VSBS

eatures of each temporal windows with each bispectral segment

ength were fed to a classifier, and CA was obtained by compar-

ng the estimated labels with the true labels through a fivefold

ross-validation. In order to improve the generalization capability

f the classifier, the average normalized CA with each bispectral

egment length was computed by averaging the normalized CA of

ach temporal window. By repeating above steps, the average nor-

alized CA with each bispectral segment length for every subject

as yielded. Finally, the average and sum of the average normal-

zed CA of all subjects with each bispectral segment length were

gured, and the optimal bispectral segment length was determined

y comparing the average and sum values. 

Support vector machine (SVM) solves the binary classification

roblem by maximizing the margin and finding an optimal hyper

lane between two classes, and it is broadly employed owing to

ts high flexibility and robustness, and powerful theoretical foun-

ation ( Sun, Feng, Chen, & Lu, 2018 ). Therefore, we implemented

VM classifier for MI classification in this paper. 

In test phase, the VSBS features of the training and test data

as extracted with the optimal bispectral segment length. Then,

he VSBS features of training data were adopted to find the opti-

al hyper plane of SVM classifier, and the final results of all the

emporal windows could be achieved. 

. Results 

.1. Performance of segment selection 

To find the optimal bispectral segment length, we employed the

vefold cross-validation over the training data of the dataset 1 and

ataset 2 (see Section 4 ), and the average normalized CA of all the

emporal windows for each subject was obtained with each bispec-

ral segment length. The best 7 comparison results of the bispectral
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Fig. 4. Flowchart of the proposed VSBS method. 
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egment lengths for the dataset 1 and dataset 2 are illustrated in

igs. 5 and 6 , respectively. 

Figs. 5 a and 6 a show the average normalized CA of all the tem-

oral windows for each subject in the dataset 1 and dataset 2,

espectively. In Fig. 5 a, the average normalized CA with the bis-

ectral segment length 3 is relatively higher for most subjects,

nd the gaps of the average normalized CA between each sub-

ect with the bispectral segment length 3 is obviously smaller than

ith other bispectral segment lengths, especially the bispectral

egment length 2, 7 and 8. Moreover, for the dataset 2, we can

bserve in Fig. 6 a that the gaps of the average normalized CA be-

ween each subject with the bispectral segment length 3 and 4

re narrower than with other bispectral segment lengths. How-

ver, for most subjects, the average normalized CA with the bispec-

ral segment length 3 is higher than with the bispectral segment

ength 4. 

In Figs. 5 b and 6 b, the average and sum of the average nor-

alized CA of all the subjects in the dataset 1 and dataset 2 are

lotted, respectively. In Fig. 5 b, the average and sum of the aver-

ge normalized CA with the bispectral segment length 3 are 0.3

nd 1.49, which are superior compared with other bispectral seg-

ent lengths for the dataset 1. Besides, in Fig. 6 b, the average

nd sum values with the bispectral segment length 3 are, 0.49

nd 4.4, greater than the rest bispectral segment lengths for the

ataset 2. 
f
Based to the surpassing performance of the bispectral segment

ength 3 over the training data of the dataset 1 and dataset 2, we

elected 3 as the optimal bispectral segment length. 

.2. Performance of the proposed VSBS method on the dataset 1 

In this paper, we utilized the CA and kappa value as the statis-

ical measure for comparison ( Saa & Çetin, 2012 ). The kappa value

an be computed as below: 

 = 

C × P cc − 1 

C − 1 

, (15) 

here C is the number of classes and P cc is the probability of

orrect classification. The larger kappa value is, the better perfor-

ance is. 

In order to verify the effectiveness of the proposed method,

e also employed PSD, ABS, variations based PSD (VPSD) and

ariations based ABS (VABS) methods over the dataset 1 and

ataset 2 for comparison, and all the comparison methods were

re-processed in the same steps as VSBS method. Moreover, the

omparison methods adopted the same SVM classifier as in the

roposed method. Table 1 and Fig. 7 indicate the comparison

erformance of PSD, VPSD, ABS, VABS methods and VSBS method

or the dataset 1. 
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Table 1 

Classification accuracy (%) and kappa values of PSD, VPSD, ABS, VABS methods and VSBS approach for 

the dataset 1. The bold shows the best average results. 

Subject Accuracy (%) Kappa 

PSD VPSD ABS VABS VSBS PSD VPSD ABS VABS VSBS 

B1 67.50 70.00 65.00 75.00 82.50 0.35 0.4 0.3 0.5 0.65 

B2 70.00 80.23 70.00 68.00 70.69 0.40 0.60 0.40 0.36 0.41 

B3 72.50 67.50 68.00 65.00 75.00 0.45 0.35 0.36 0.30 0.50 

B4 80.95 76.19 79.00 69.00 81.00 0.62 0.52 0.58 0.38 0.62 

B5 71.43 71.43 74.00 69.00 81.00 0.43 0.43 0.48 0.38 0.62 

Average 72.48 73.02 71.20 69.20 78.04 0.45 0.46 0.42 0.38 0.56 

Fig. 5. Performance of each bispectral segment length over the training data of the 

dataset 1. (a) The average normalized CA for each subject with the bispectral seg- 

ment length 2–8. (b) The average and sum of the average normalized CA of all the 

subjects with the bispectral segment length 2–8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Performance of each bispectral segment length over the training data of the 

dataset 2. (a) The average normalized CA for each subject with bispectral segment 

length 2–8. (b) The average and sum of the average normalized CA of all the sub- 

jects with the bispectral segment length 2–8. 

Fig. 7. Comparison of the Kappa values for each subject in the dataset 1. 
Fig. 7 gives the comparison of the kappa values of PSD, VPSD,

ABS, VABS and VSBS methods, and we can observe that the kappa

performance of our VSBS method outperforms the other methods

for most subjects. Specifically, the results of the proposed method

are outstandingly better than the other methods for subject B1, B3

and B5. Table 1 gives the CA and kappa values of PSD, VPSD, ABS,

VABS and VSBS methods. It can be seen that VSBS algorithm ob-

tains surpassing results compared to the other features extraction

methods. VSBS method achieves an average CA of 78.04% as well as

an average kappa of 0.56. Compared to PSD, the proposed method

increases 5.56% in average CA and 0.11 in average kappa. For the

average enhancement, VSBS method achieves 7.84% in average CA

and 0.14 in average kappa against ABS method. More importantly,

our method yields greater results than PSD, ABS and VABS meth-

ods for every subject in the dataset 1. 



L. Sun, Z. Feng and N. Lu et al. / Expert Systems With Applications 131 (2019) 9–19 15 

Fig. 8. Comparison of the average kappa values for each subject in the dataset 2. 

Table 2 

Classification accuracy (%) of the evaluation session (04E) 

from the dataset 2 with PSD, VPSD, ABS, VABS methods 

and VSBS approach. The bold indicates the best average re- 

sult. 

Subject Evaluation (04E) 

PSD VPSD ABS VABS VSBS 

B1 80.36 81.25 81.25 76.79 83.93 

B2 61.76 61.76 64.71 57.84 60.78 

B3 65.81 66.67 57.26 61.54 59.83 

B4 99.35 99.35 99.35 98.04 99.35 

B5 81.41 82.69 80.77 80.77 91.67 

B6 81.02 82.48 84.67 78.83 83.21 

B7 74.77 76.64 71.96 77.57 84.11 

B8 90.48 90.48 92.06 88.89 93.65 

B9 93.04 94.78 91.30 93.04 95.65 

Average 80.89 81.79 80.37 79.26 83.58 

Table 3 

Classification accuracy (%) of the evaluation session (05E) 

from the dataset 2 with PSD, VPSD, ABS, VABS methods 

and VSBS approach. The bold indicates the best average re- 

sult. 

Subject Evaluation (05E) 

PSD VPSD ABS VABS VSBS 

B1 61.21 62.07 61.21 67.24 65.52 

B2 55.24 54.55 63.64 59.44 55.24 

B3 61.06 60.18 61.06 56.64 61.95 

B4 96.10 96.10 96.10 94.16 95.45 

B5 88.03 86.32 85.47 88.89 95.73 

B6 82.46 85.96 81.58 84.21 87.72 

B7 84.80 87.20 84.80 81.60 88.80 

B8 94.23 95.19 94.23 95.19 97.12 

B9 79.23 80.00 82.31 77.69 88.46 

Average 78.04 78.62 78.93 78.34 81.78 
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Table 4 

Maximum kappa of the two evaluation sessions from 

the dataset 2 with PSD, VPSD, ABS, VABS methods and 

VSBS approach. The bold indicates the best average 

rate. 

Subject Max. kappa 

PSD VPSD ABS VABS VSBS 

B1 0.61 0.63 0.63 0.54 0.68 

B2 0.24 0.24 0.29 0.19 0.22 

B3 0.32 0.33 0.22 0.23 0.24 

B4 0.99 0.99 0.99 0.96 0.99 

B5 0.76 0.73 0.71 0.78 0.91 

B6 0.65 0.72 0.69 0.68 0.75 

B7 0.70 0.74 0.70 0.63 0.78 

B8 0.88 0.90 0.88 0.90 0.94 

B9 0.86 0.90 0.83 0.86 0.91 

Average 0.67 0.69 0.66 0.64 0.71 

Table 5 

Average kappa of the two evaluation sessions from the 

dataset 2 with PSD, VPSD, ABS, VABS methods and 

VSBS approach. The bold indicates the best average 

rate. 

Subject Average kappa 

PSD VPSD ABS VABS VSBS 

B1 0.42 0.43 0.42 0.44 0.49 

B2 0.17 0.16 0.28 0.17 0.16 

B3 0.27 0.27 0.18 0.18 0.22 

B4 0.95 0.95 0.95 0.92 0.95 

B5 0.69 0.69 0.66 0.70 0.87 

B6 0.63 0.68 0.66 0.63 0.71 

B7 0.60 0.64 0.57 0.59 0.73 

B8 0.85 0.86 0.86 0.84 0.91 

B9 0.72 0.75 0.74 0.71 0.84 

Average 0.59 0.60 0.59 0.58 0.65 

u  

V  
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n  

a  

m  

0  
.3. Performance of the proposed VSBS method on the dataset 2 

For the dataset 2, Tables 2 –5 and Fig. 8 show the comparison

erformance of PSD, VPSD, ABS, VABS methods and the proposed

ethod. Tables 2 and 3 show the comparison CA of two evaluation

essions (04E and 05E), Tables 4 and 5 indicate the comparison

aximum and average kappa values between the two evaluation

essions, and Fig. 8 illustrates the comparison average kappa val-
es between the two evaluation sessions. In Tables 2 and 3 , our

SBS approach obtains 83.58% and 81.78% in term of an average

A for the two evaluation sessions, respectively. In Tables 4 and 5 ,

he proposed method reaches the highest average results of the

ine subjects with 0.71 and 0.65 in term of maximum and aver-

ge kappa. Compared to PSD method, the average improvement of

aximum and average kappa with our VSBS approach is 0.04 and

.06, respectively. With regard to the maximum and average kappa,
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Table 6 

The average kappa values of the proposed method and other state-of-the-art works 

on the dataset 2. The bold is used to illustrate the highest average rate. 

Subject Average kappa 

SSMM CNN-SAE MKELM PHVDSN BSP VPSD VSBS 

B1 0.48 0.52 0.55 0.43 0.54 0.43 0.49 

B2 0.10 0.32 0.29 0.31 0.29 0.16 0.16 

B3 0.11 0.49 0.09 0.26 0.22 0.27 0.22 

B4 0.88 0.91 0.99 0.94 0.93 0.95 0.95 

B5 0.74 0.66 0.69 0.73 0.64 0.69 0.87 

B6 0.64 0.58 0.39 0.67 0.69 0.68 0.71 

B7 0.53 0.49 0.74 0.67 0.50 0.64 0.73 

B8 0.84 0.49 0.80 0.89 0.82 0.86 0.91 

B9 0.71 0.46 0.67 0.75 0.74 0.75 0.84 

Average 0.56 0.55 0.58 0.63 0.60 0.60 0.65 
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VSBS method obtains an average increase of 0.02 and 0.05 against

VPSD method. Compared to ABS method, the average improve-

ment of the maximum and the average kappa with VSBS approach

are 0.05 and 0.06, respectively. Regarding the maximum and aver-

age kappa, VSBS method yields an average increase of 0.07 against

VABS method. In Fig. 8 , we can see that the results of VSBS method

is prominent for most subjects against PSD and ABS based meth-

ods. Specifically, the performance of our method remarkably higher

than the other methods for subject B1, B5, B7 and B9. Tables 2 –5

and Fig. 8 further illustrate the validity of our VSBS method for MI

classification. 

For the sake of assessing the statistical significance of improve-

ment with the proposed method, a two-way analysis of variance

(ANOVA2) test was employed ( Shahid & Prasad, 2011 ). For VSBS

method and PSD method, the p -values is 0.0075. With regard to

our method and VPSD method, the p -values is 0.00399. For VSBS

and ABS method, the p -values is 0.0103. Regarding VSBS and VABS

method, the p -values is 0.0 0 02. Since all the p -values are less than

0.05, the improvement with VSBS method is statistically signifi-

cant. 

7. Discussion 

By the reason of the sensitivity of one bispectral feature value

to non-linear and non-Gaussian noises, the representative ABS

method could deteriorate the performance of MI classification.

Therefore, we propose an advanced bispectral features extraction

method to reduce the influence of non-linear and non-Gaussian

noises as well as improve the performance of MI classification. We

verified our proposed VSBS method on the dataset collected in our

laboratory and BCI competition IV dataset 2b, and employed the

PSD based and ABS based methods for comparison. The compar-

ison results demonstrate the validity and superiority of the pro-

posed method for MI classification. 

Observing the results of all the Tables and figures in Section 6 ,

the PSD based methods outperform the ABS based methods. This

may be because the PSD features still contain partially valuable

features for MI classification compared to the contaminated ABS

features. On the other hand, the average results of variations based

PSD method are better than PSD method. This confirms that the

variations of MI-related EEG signals could provide more useful in-

formation of MI-related brain activities. 

7.1. Comparison with other state-of-the-art works 

To verify our proposed method comprehensively, we compare

our proposed approach to other state-of-the-art works, includ-
Fig. 9. Comparison results of VSBS method and ot
ng sparse support matrix machine (SSMM) ( Zheng, Zhu, Qin,

hen, & Heng, 2018 ), convolutional neural networks with stacked

utoencoders (CNN-SAE) ( Tabar & Halici, 2017 ), multi-kernel ex-

reme learning machine (MKELM) ( Zhang et al., 2018 ), PSO op-

imized hidden-layer visible deep stacking network (PHVDSN)

 Tang, Zhang, Zhou, & Liu, 2017 ) and ABS based method (BSP)

 Shahid & Prasad, 2011 ). All these comparisons evaluated their

ethods on the same dataset 2 (see Section 4.2 ). Table 6 and

ig. 9 demonstrate the average kappa values of our method and

he other counterparts. 

Fig. 9 shows that the classification performance of VSBS method

s more excellent than other comparison methods for most sub-

ects. Specifically, the average kappa results of the proposed

ethod are greatly prominent compared to the other methods for

ubject B5, B6, B8 and B9. Moreover, Table 6 also demonstrates

he superiority of VSBS method for MI classification. Compared

o SSMM and CNN-SAE method, the average improvement of our

ethod remarkably increases 0.09 and 0.1, respectively. 

BSP method extracts the ABS features and uses LDA classifier

or MI classification. However, compare to BSP technique, our VSBS

echnique obtains an average increase of 0.05, especially 0.23 for

ubject B5 and B7, and 0.1 for subject B8 and B9. Therefore, the

omparison results between BSP method and our method further

rove the limitation of ABS features for MI classification. On the

ther hand, although BSP method yields a same average result

ith VPSD method, the performance of VPSD method for most

ubjects (B3, B4, B5, B7, B8, B9) is superior to BSP method. This

bservation also supports the conclusion that the ABS features

ould be impacted by non-linear and non-Gaussian noises so se-

iously that the separability of ABS features are greatly deterio-
her state-of-the-art works on the dataset 2. 
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Table 7 

The two-way analysis of variance (ANOVA2) test results for evaluat- 

ing the statistical significance of the difference between the proposed 

method and the other approaches. 

SSMM CNN-SAE MKELM PHVDSN BSP 

p -value 0.0 0 09 0.0605 0.0 0 05 0.0 0 03 0.0 0 01 

Table 8 

Classification accuracy (%) of the proposed method 

and other state-of-the-art works on BCI competition III 

dataset IVa. The bold indicates the best average result. 

Subject Accuracy (%) 

MKELM MSPCA SS-CFIS VSBS 

aa 83.3 96 82.1 94.7 

al 98.5 92.3 100 99.1 

av 71.4 88.9 63.3 82.3 

aw 91.3 95.4 83.0 95.0 

ay 93.1 91.4 60.3 94.3 

Average 87.5 92.8 77.8 93.1 
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Table 9 

The average kappa values of the proposed method 

with the different classifiers on the dataset 2. The 

bold is used to illustrate the highest average rate. 

Subject Average Kappa 

SVM NB RF KNN BP 

B1 0.49 0.45 0.37 0.37 0.55 

B2 0.16 0.18 0.22 0.15 0.21 

B3 0.22 0.10 0.19 0.12 0.21 

B4 0.95 0.94 0.96 0.94 0.96 

B5 0.87 0.71 0.86 0.82 0.82 

B6 0.71 0.68 0.74 0.77 0.70 

B7 0.73 0.61 0.73 0.68 0.75 

B8 0.91 0.87 0.92 0.88 0.92 

B9 0.84 0.77 0.83 0.85 0.82 

Average 0.65 0.59 0.65 0.62 0.66 

Table 10 

The AUC values of the proposed method with the different 

classifiers on the dataset 2. The bold is used to illustrate 

the highest average rate. 

Subject AUC 

SVM NB RF KNN BP 

B1 77.16 75.63 72.74 68.77 78.70 

B2 67.34 61.67 65.40 62.21 65.46 

B3 63.89 61.55 67.24 62.67 66.22 

B4 98.54 97.13 97.11 96.79 98.12 

B5 91.08 87.31 92.91 90.97 91.00 

B6 88.48 83.80 85.90 85.50 85.29 

B7 87.57 82.02 89.50 87.46 86.71 

B8 96.29 92.74 95.73 94.44 96.33 

B9 96.44 91.36 91.66 92.92 92.36 

Average 85.20 81.47 84.24 82.41 84.46 

Table 11 

The F1-Score of the proposed method with the different 

classifiers on the dataset 2. The bold is used to illustrate 

the highest average rate. 

Subject F1-score 

SVM NB RF KNN BP 

B1 76.82 74.94 72.37 71.30 79.90 

B2 68.58 64.15 68.62 65.00 67.62 

B3 63.61 62.38 67.00 62.83 66.69 

B4 98.04 96.73 97.71 96.73 98.04 

B5 91.34 86.53 92.63 91.66 91.02 

B6 90.50 85.02 87.22 88.68 85.41 

B7 86.45 81.78 87.35 86.91 86.91 

B8 95.64 93.26 95.64 94.05 95.64 

B9 93.47 89.12 90.87 92.61 91.29 

Average 84.94 81.55 84.38 83.31 84.72 
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ated. The statistical significance of the difference between the pro-

osed method and other state-of-the-art works is also evaluated

ith ANOVA2 test, and the results are showed in Table 7 . 

BCI competition III dataset Iva ( Blankertz et al., 2006 ) was also

tilized to evaluate our VSBS method. This dataset contained five

ealthy subjects, who need to accomplish two MI tasks regarding

ight hand and foot. The data of each subject was included 280

rials, and each trial was recorded from 118 electrodes with sam-

ling rate 100 Hz. In each trial, different visual cues were appeared

or 3.5 s, and more than 2 s relaxing interval was followed. For this

ataset, all 280 trials were applied for training and test, and a ten-

old cross-validation is employed to select channels and features

 Pfurtscheller, Brunner, Schlögl, & Lopes da Silva, 2006 ). 

Table 8 indicates the comparison results of VSBS method and

ther state-of-the-art works, including spatio spectral cognitive

uzzy inference System (SS-CFIS) ( Das, Suresh, & Sundararajan,

016 ), multiscale principal component analysis based (MSPCA)

 Kevric & Subasi, 2017 ) method and MKELM. We can see that VSBS

ethod yields better results than other state-of-the-art works in

able 8 . Feet imagery movements can be detected in midcentral

oot representation area of scalp while hands imagery movements

an be differently revealed in contralateral area of scalp. Moreover,

ands and feet imagery movements can trigger different beta re-

ounds ( Pfurtscheller, Neuper, Brunner, & Lopes, 2005 ). Therefore,

he classification results of hand and foot MI tasks could be rela-

ively higher than the results of right and left hands MI tasks. 

.2. Comparison of classifiers 

To further highlight the effectiveness of the proposed features

xtraction method, VSBS method with five different classifiers,

VM, k-nearest neighbor (KNN), random forest (RF), back propaga-

ion (BP) network and naïve Bayesian (NB), were employed on the

ataset 2. Table 8 and Fig. 10 indicate the average kappa values of

he five different classifiers. 

Experimental results of RF and BP classifiers are relatively close

o SVM classifier as shown in Fig. 10 . On the other hand, NB clas-

ifier yields the worse classification performance due to the strong

ndependent assumptions. In Table 8 , we can observer that SVM,

F and BP classifiers achieve an average kappa of 0.65 and 0.66, re-

pectively. Yet, the classification effectiveness of KNN is unsatisfac-

ory. This may be because KNN may be relatively harder to capture

ore useful features compared to the other classifiers ( Zhu et al.,

019 ). AUC (Area Under Curve) ( Du, Dua, Acharya, & Chua, 2012 )

nd F1-Score ( Gerla et al., 2017 ) are used to evaluate the perfor-
ance of classifiers, and Tables 10 and 11 give the comparison

UC values and F1-Score of the five different classifiers. It also

an be seen that SVM, RF and BP classifiers yield higher results

n Tables 9 and 10 . Therefore, we can draw the conclusion that

ur VSBS method could produce robustly better performance for

I classification with most classifiers. 

.3. Limitation 

Since VSBS method selects the optimal bispectral segment

ength by comparing the average and sum of the average

ormalized CA of all the subjects, this global optimal bispectral

egment length may be ineffective for some subjects who are af-

ected by EOG artifacts seriously ( Saa & Çetin, 2012 ). Therefore, the

urther work will focus on finding the sub-optimal bispectral seg-

ent length for each subject and further improving the separabil-

ty of the bispectral features for MI classification. 
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Fig. 10. Comparison results of VSBS method with the different classifiers on the dataset 2. 
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8. Conclusion 

In this paper, an advanced features extraction method is pro-

posed to improve the performance of MI classification. The pro-

posed method utilizes the variations of MI-related EEG signals as

input to bispectrum analysis, thus more valuable information of

underlying MI-related brain activities could be revealed. Moreover,

a new segmented bispectral features are developed to reduce the

impact of non-linear and non-Gaussian noises, and an optimal bis-

pectral segment length is learn from training data to highlight the

useful features for MI classification. The dataset collected in our

laboratory and BCI competition IV dataset 2b were used to ver-

ify the effectiveness of the proposed method. The results prove

that our method improves the separability of bispectral features

for MI classification. Moreover, the comparison results with other

state-of-the-art works also indicates the superiority of the pro-

posed method for MI classification. 

In conclusion, several advantages of the proposed method could

be summarized: (1) the proposed method verifies that the vari-

ations of MI-related EEG signals could provide more valuable in-

formation of MI-related brain dynamics; (2) our method enhances

the discriminability of bispectral features and reduces the impact

of non-linear and non-Gaussian noises; (3) the proposed method

has validated practical for the sake of the superior performance for

more than one dataset. 
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