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Two Brains, One Game: Design and Evaluation of a
Multiuser BCI Video Game Based on Motor Imagery

Laurent Bonnet, Fabien Lotte, and Anatole Lécuyer

Abstract—How can we connect two brains to a video game by
means of a brain–computer interface (BCI), and what will happen
when we do so? How will the two users behave, and how will
they perceive this novel common experience? In this paper, we
are concerned with the design and evaluation of multiuser BCI
applications. We created a multiuser videogame called BrainArena
in which two users can play a simple football game by means of
two BCIs. They can score goals on the left or right side of the
screen by simply imagining left or right hand movements. To add
another interesting element, the gamers can play in a collaborative
manner (their two mental activities are combined to score in the
same goal), or in a competitive manner (the gamers must push
the ball in opposite directions). Two experiments were conducted
to evaluate the performance and subjective experience of users
in the different conditions. In the first experiment, we compared
a single-user situation with one multiuser situation: the collabo-
rative task. Experiment 1 showed that multiuser conditions are
significantly preferred, in terms of fun and motivation, compared
to the single-user condition. The performance of some users was
even significantly improved in the multiuser condition. A subset of
well-performing subjects was involved in the second experiment,
where we added the competitive task. Experiment 2 suggested that
competitive and collaborative conditions may lead to similar per-
formances and motivations. However, the corresponding gaming
experiences can be perceived differently among the participants.
Taken together our results suggest that multiuser BCI applications
can be operational, effective, and more engaging for participants.

Index Terms—Brain–computer interface (BCI), evaluation,
game design, multiplayer games.

I. INTRODUCTION

B RAIN–COMPUTER interface (BCI) technology enables
a user to send commands to a computer or other system

using only his/her brain activity. The most common way to ac-
quire such physiological signals is by using electroencephalog-
raphy (EEG): several sensors are placed on the user’s scalp to
acquire the microcurrents produced by the activity of neurons in
the brain. The past decade has seen a widespread enthusiasm for
this technology and its potential applications. Many researchers
now drift from the original objective, helping disabled people to
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recover a means of interaction with their environment and sur-
rounding [1], to multimedia applications such as video games
[2].
The video game context adds many new challenges for the

BCI research community, as both the physical and virtual en-
vironments are usually highly complex [3]. Indeed, the typical
gamer is a healthy user that may produce a wide range of move-
ments during the gaming experience, most of them disrupting
the BCI itself. The virtual environment may also disturb the BCI
usage as it produces many distractions: visual, tactile, or audi-
tory stimuli.
In spite of these challenges, video games hold a lot of poten-

tial for use in BCIs as they aim to entertain and motivate the
users. As the motivation plays a major role in the success of
BCI interaction [4], video games thus represent a highly rele-
vant application field for training and mastering BCI systems.
Previous studies by Leeb et al. [5] or Ron-Angevin et al. [6]
show how using virtual reality in BCI feedback improves the
performances of the system, especially with naive or untrained
users. Furthermore, the recent advances in the acquisition tech-
nologies, resulting in low-cost EEG devices [7], [8], make the
use of BCI feasible in a gaming context outside the laboratories.
Multiple studies have already tackled the use of EEG-based BCI
in a video game context [9], regarding the interaction techniques
and nature of feedback [10], the performances [10], or the sub-
jective experience [11].
In this paper, we focus on a particular interaction paradigm,

which is already widely used in gaming in general, but mostly
neglected in BCI research so far: the multiuser interaction. The
objective is to connect multiple users to the same video game
application in real time, through their brain activity.
We address several challenging questions. The first ones are

related to the technical feasibility and design of the system itself.
We seek to conceive and implement a multiuser BCI system for
gaming purposes, which implies merging multiple BCI inputs.
A tradeoff must be found between immersion and simplicity
for the design of the feedback: while a complex and immersive
feedback will be close to a commercial video game, a simpler
one with reduced distractions could lower the mental workload,
thus facilitating BCI use.
Second, how multiuser interaction differs from single-user

control is yet to be studied. Thus, we aim to qualify and quantify
the influence of a multiuser paradigm on the BCI interaction,
with regards to the performances and user impressions (e.g.,
motivation or enjoyment).
Therefore, in this paper, we propose three contributions.
• BrainArena, a new multiuser BCI video game based on
motor imagery (MI). We present its concepts, architecture,
and implementation.

1943-068X/$31.00 © 2013 IEEE
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• The introduction of two paradigms of interaction for
multiuser BCI applications: a collaborative mode (i.e., the
users share a common goal and a common action) and
a competitive mode (i.e., the two users have conflicting
intentions, and their actions are opposed).

• An evaluation of our system in these conditions, on 20
naive subjects.

This paper is organized as follows. After reviewing the cur-
rent state of the art regarding BCI video games, and multiuser
interaction and feedback design, we present the BrainArena
concepts, architecture, and implementation. We then move on
to the results and analysis of two evaluations we conducted
on 20 naive subjects playing the BrainArena BCI game. The
first experiment was comparing single-user condition with
multiuser condition, whereas the second experiment was fo-
cused on collaborative versus competitive situations. Finally,
we discuss these results and the potential applications of the
multiuser BCI interaction in video games.

II. RELATED WORK

A variety of games using BCI interaction have already been
developed. Some use the BCI explicitly as a control channel. In
the MindBalance [12] game, the player was able to control the
balance of his avatar by focusing on two flickering targets trig-
gering different steady-state visual evoked potential (SSVEP)
responses. In the application of Lotte et al., Use the force! [10],
the player was able to lift a virtual spaceship by performing
MI of the feet (i.e., imagination of feet movements [13]). The
control paradigm used event-related synchronization (ERS) of
the Beta rhythm. The Graz-BCI Game Controller developed by
Scherer et al. [14] was able to connect any BCI or physiolog-
ical sensor input to a game, using intelligent and context-aware
tools. They used the Emotiv software suite to identify users’
mental states (e.g., excitement or meditation) and facial expres-
sions, to control an avatar in the famous online game World
of Warcraft (WoW). The Austrian company g.Tec presented the
IntendiX Screen-Overlay Control Interface (SOCI) [15] at the
CeBIT expo 2012 (Hanover, Germany), that relied on SSVEP
to select different items on a screen. Visitors could test it by
controlling an avatar in WoW. Recent research has also been
focused on implicit interaction with video games [16]. Nijholt
et al. introduced in AlphaWow [9] the use of alpha activity to
detect the stress level of the player, automatically adapting the
avatar’s form. Bacteria Hunt [17] was a multimodal BCI game
based on both explicit and implicit BCI interaction: while the
avatarmovements weremodified by the user stress level (alpha),
a target selection was done using SSVEP detection. For a more
comprehensive overview of BCI use in video games, the inter-
ested reader can refer to [18], [9], and [19].
While researchers were aiming at making BCI interaction

possible in a gaming context, the question of multiuser inter-
action arose. Acknowledging the current trends in video game
usage (e.g., network connection, multimodal interaction) Ni-
jholt [20] described his objectives toward a multiparty and so-
cial application of BCI in the future. The author foresaw an in-
tegration of BCI interaction in our media-based social life (e.g.,

video games, Internet). A first step toward such multiparty so-
cial gaming was presented by Obbink [21], in which the author
studied the influence on social interaction of using BCI con-
trol (selection using SSVEP) in a two-player game (Mind the
sheep!). As any cooperative task implies interaction between
users, both physical and vocal, this interaction may conflict with
the BCI usage itself. EEG systems are prone to muscular ar-
tifacts and noise in such situations. The author qualified and
quantified the social behaviors between the two players, such
as utterances and empathic gestures. He addressed the influ-
ence of the BCI on the collaboration level, compared to mouse
control condition. However, his paper did not compare perfor-
mances or preferences of users in multiuser versus single-user
scenarios. Blankertz et al. reported using the Berlin-BCI system
in a two-player environment [22], inspired by the famous video
game Pong. This application was successfully used during the
CeBIT expo 2006 (Hanover, Germany) on two subjects per-
forming demonstrations all day. However, to the authors’ best
knowledge, there exists no formal description and evaluation of
the system.
Another issue of BCI game design is the influence of the

feedback presented to the user. The importance of feedback
was raised early in the BCI community [23]. Neuper and
Pfurtscheller reviewed the trends in BCI feedback [24] and
pointed out the effect of feedback during the training phase, and
how its nature and computation mode influence future perfor-
mances. Barbero et al. were interested in the feedback accuracy
[25]: during a motor-imagery task, participants were presented
a biased feedback (strong or weak, positive or negative bias).
This study concluded that subjects with low performances
benefit from a strong positive bias in their feedback. Designing
an appropriate feedback for BCI applications, in general, is
still considered as an interesting topic in the community. In-
troducing BCI interaction in the video game world, where the
feedback must be entertaining above everything else, is thus a
challenge on its own.
When working on BCI games, another key point is motiva-

tion, which plays a major role in any BCI interaction. Nijboer
et al. studied this topic on severely paralyzed patients suffering
from amyotrophic lateral sclerosis (ALS) [4]. The importance of
motivation also emerged from the work of Nijboer et al. [26],
while the authors were designing an auditory-based BCI and
evaluating it on disabled subjects. Influence of motivation has
also been assessed by Kleih et al. on healthy subjects [27]: by
raising the motivation level of P300 speller users (with finan-
cial incentive), the authors observed an increase in their per-
formance. User acceptance and motivation is usually assessed
through questionnaires and subjective appreciation. Plass-Oude
Boss et al. emphasized the role of user experience evaluation
[28] in order to improve further designs of any BCI application,
especially in an entertainment context, e.g., video games. This
work was extended by Van de Laar et al. [29].
We can conclude from the literature that multiuser interaction

using BCI control in a gaming application has been introduced
only recently, and has not been studied in depth. At present,
there has not been any experiment that specifically compares
solo and multiplayer MI-based BCI gaming, and how it may
influence performance and user experience/preference.
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Fig. 1. Single-user BCI interaction loop, illustrated by an example (in red/italic font) inspired by the use of MI paradigm. Two bipolar channels are acquired on
users’ scalps during a hand MI trial. The signal processing outputs a class label with a probability (e.g., class left with 75% probability). The decision making
concludes that the probability is high enough to decide the user’s mental state: a left hand MI. In the interaction technique this decision is translated into a command
for the application: move left. From this command, the application produces a visual feedback: the ball on screen is moving left.

III. BRAINARENA: A MULTIUSER BCI GAME BASED ON MI

We designed a multiplayer video game concept called
BrainArena, a football game controlled by hand MI. The ob-
jective of two users is to imagine left or right hand movements
to move a virtual ball toward a goal located on the left or right
side of the screen, respectively. The design of this application
covers a large panel of technical issues: synchronization of the
EEG acquisition and processing, EEG signal processing and
classification, video game visual rendering, multiuser feedback
design, and real-time feedback rendering. The flexibility of our
implementation enables easy switching between three different
modes: single-user condition and collaborative and competitive
multiuser conditions (see Section III-D).
In this section, we first present several definitions of mul-

tiuser interactions with video games to contextualize our work.
We then move on to the hardware and software components of
the BrainArena BCI game, and the different game modes devel-
oped.

A. Multiuser BCI Interaction With Video Games

A single-user BCI interaction with a video game environ-
ment, presented in Fig. 1, is a closed-loop system. The EEG
signals are first acquired from a user, then classified by a signal
processing unit. The decision maker uses this classification to
choose the user’s mental state, then the interaction technique
(i.e., the system for transforming the interface input data to com-
prehensible information for the application [30]) uses this deci-
sion to produce a command. Finally, the application gives feed-
back to the user according to the effects of the command.
We consider a situation of multiuser BCI interaction when

two or more people equipped with a BCI system share an in-
teraction in a common environment. In a gaming context, mul-
tiuser interaction is also referred to as multiplayer interaction.
We can extend this principle to an environment where actors
may be indistinctly people, objects, or intelligent systems. This
configuration is related to the multiparty interaction presented
by Nijholt [20].
Multiuser BCI systems can connect users at four different

levels in the loop, as illustrated in Fig. 2.
1) At the level of the signal processing system, input EEG sig-
nals from several users can be merged to produce a unique

multiuser analysis. Offline works of Fallani et al. on hyper-
brain networks [31] or Astolfi et al. on EEG hyperscanning
[32] are related to this concept. Example #1 in Fig. 2 illus-
trates this connection with two users performing MI of the
hands, with different EEG setups but a unique classifica-
tion.

2) At the decision level, the chosen class can be viewed as the
result of several classification results. An example could be
the combination of different emotional mental states that
contribute to deciding the dominant feelings in a viewer
group watching a movie or a commercial. Example #2 in
Fig. 2 presents the decision making from two MI classifi-
cations; the mental state is deduced from the most probable
class.

3) At the level of the interaction technique, several dependent
decisions can be combined to issue a multiuser command
to the application. Cumulating several actions on the same
virtual or physical objects is possible. For example, an ob-
ject can be moved according to two decisions, one for the
direction and one for the distance. In Fig. 2, example #3
shows how two decisions (one hand MI mental state for a
direction and one SSVEP outcome for a selection) can be
joined to produce a unique command.

4) At the level of the application, the feedback can be de-
fined as the result of several independent interaction com-
mands. A simple example would be several users control-
ling their independent avatars in a virtual world. Example
#4 in Fig. 2 uses two separate BCI pipelines that issue dif-
ferent commands based on MI, moving two different ob-
jects on screen.

Any multiuser interaction in a video game can also be char-
acterized regarding the objective of the interaction.
• Independent multiuser interaction: The users have distinct
objectives while interacting with the environment. These
objectives are independent and unrelated.

• Collaborative multiuser interaction: Two or more users
share the same objective. They may choose different ac-
tions but their ultimate goal remains the same.

• Competitive multiuser interaction: User objectives are
in conflict. The goal may be different but ultimately the
course of actions collides. Only a subset of users can win.
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Fig. 2. Four different scenarios of multiuser BCI interactions depending on the user connection level, illustrated by examples in red/italic font. Only the connection
level inputs and outputs are described. 1) The EEG signals from two users performing hand MI are merged in the same signal processing that produces a unique
classification with a probability (class left with 80% probability). 2) Two hand MI classifications are merged in the decision making, which here simply chooses
the most probable mental state between two classes. 3) Two decisions, one hand MI state and one focused target BCI paradigm such as SSVEP, are merged to issue
a unique command for the application: move the selected target to the left. 4) Two independent commands issued by two separated MI BCI pipelines are merged
into the application to produce a complex feedback where two different objects (a ball and a goal keeper) are moved on a screen.

As the objectives may be multiple in the same situation, col-
laborative and competitive interactions can both be present in
the same context. For example, in a sport video game, with two
teams of users, the interaction within the teams is collabora-
tive (e.g., move, pass), but competitive when facing the opposite
team members (e.g., score a goal). Even in a fully collaborative
game (e.g., two users resolving a puzzle game), a form of com-
petition can always be found if the users define themselves a cer-
tain success metric (e.g., number of pieces of puzzle resolved).
We predict that competitive behaviors are likely to happen with
people experienced at gaming in general, even if the game prin-
ciples and objectives are not designed as competitive.
The BCI system we present in this paper makes the connec-

tion between users at the decision level. Each user has his/her
own EEG acquisition and tuned BCI pipeline that outputs a clas-
sification (a class label, left or right MI, and a value depending
on the classifier result). BrainArena uses the two classification

results to decide which mental state is dominant and to what
extent. In our case, mastering a BCI interface based on MI is
known to be difficult for untrained users. Thus, we chose a
simple environment with limited distractions.

B. Architecture

The architecture of the BrainArena BCI game is represented
in Fig. 3.
It is composed of several layers:
• EEG acquisition: caps and amplifiers acquire the EEG sig-
nals of both users in parallel;

• EEG processing: EEG signals are processed and classified
to identify the user’s mental state;

• Interaction paradigm: BrainArena takes the two BCI pro-
cessing outputs to decide which is the dominant mental
state, and to control the feedback;
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Fig. 3. Architecture of the BrainArena multiuser BCI application.

• feedback: three possible feedbacks can be displayed ac-
cording to the game mode (solo, collaborative, competi-
tive).

Our implementation of this architecture relied on three inter-
connected computers. We assigned the different functions de-
scribed previously onto these regular desktop computers. The
first one acquired the signals from two g.USBAmp amplifiers
(g.Tec GMbH, Austria) and GAMMACaps with up to 16 ac-
tive electrodes. This station also ran the multiuser video game
mode when required. The two other stations were assigned to
each subject, for the signal processing and the single-user video
game mode. The acquisition computer was used as a monitoring
station for the experimenter. We based our implementation on
the OpenViBE software platform [33] for the EEG acquisition,
the signal processing and the output of commands for the ex-
ternal game application, and the interconnection between every
software component. The video game programs were written
using the Ogre3D rendering engine [34]. A picture of the appa-
ratus is shown in Fig. 4, and Fig. 5 shows the system in use.

C. Video Game Design

The application was designed as a tradeoff between the com-
plexity of the visual feedback and the user’s visual workload.
We chose a very simple environment to avoid distractions that
could disrupt BCI usage. We displayed a ball at the center of the
screen on a black background. Goals were symbolized by two

triangles on each side of the screen (see Fig. 6 for an annotated
screenshot). A green cross could be displayed in the center, with
green or blue gauges going left or right during game sessions.
The feedback gave two complementary pieces of informa-

tion. First, the real-time feedback on the “intensity” of the com-
mands given by the users was provided: a gauge which went
left or right depending on whether left or right MI was recog-
nized, and whose length represented the actual intensity of the
command. When two users were connected, three gauges were
displayed: the two single-user feedbacks plus a multiuser gauge
in the middle for the resulting overall command, summing both
users’ commands. The lengths of the user gauges were directly
proportional to the normalized output of the classifier(s) used
in the BCI process (see Section III-E). In multiuser modes, the
sum of the output was divided by two, so that the resulting mul-
tiuser feedback was in the same range as the real-time feedback
in the single-user mode. The sizes and directions of the gauges
were updated in real time, 16 times per second.
The second form of feedback involved the ball rolling hori-

zontally when pushed by the mental commands (i.e., left or right
hand MI), acting like a cumulative feedback for the user. The
real-time gauges could be viewed as a representation of these
push forces applied to the ball, each push being added to the
previous ones to move the ball. The ball had a physics-based
behavior, thus when pushed it acquired a velocity. This speed
was attenuated by a viscosity parameter which slowed the ball
gradually, or by an opposite push. Moving the ball to a given
goal was the objective of the game, and increased the users’
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Fig. 4. Experiment apparatus.

scores accordingly. Figs. 7 and 8 present this feedback during
collaborative and competitive trials, respectively.

D. Different Paradigms: Solo, Collaborative, and Competitive

We designed three different paradigms: one single-user and
two multiuser interactions. The solo mode involves only one
user, thus one BCI pipeline. The system asks the user to score
a goal on the left or right side of the screen, by performing an
imaginary movement of the corresponding hand. Fig. 6 presents
the application during a solo trial. This paradigm was used to
compare single and multiuser control in a BCI game.
In multiplayer gaming, people are expected to work together

to achieve a goal and/or work against each other to be the best.
Thus, we designed two versions of our multiuser BCI game: a
collaborative mode, where players are supposed to join forces
to achieve the goal and improve their score; and a competitive
version where they must perform better than their opponent.
The collaborative version (Fig. 7) received inputs from two

BCI systems. The two users shared the same objective: moving
the ball to the left or right goal. The instruction was displayed
for each user beside their name (USER 1 and USER 2; see Fig. 7).
The application displayed the gauge feedback of both users.
Between users’ individual feedbacks, the multiuser feedback
was presented in blue as the sum of both feedbacks. The ball
was pushed by the multiuser feedback. In this context, scoring
a goal could become very challenging as one user performing
poorly could easily prevent the ball from reaching the goal. This
was confirmed by beta testers before the evaluation. To avoid
the frustration that may be created by such a situation, the ball
was automatically animated at the end of each trial to reach the
nearest goal.
The competitive mode (Fig. 8) was similar to the collabora-

tive one except that the instructions given to the two users were
opposite. For example, when the first user had to score in the

left goal, the second user had to score in the right one. Scoring
a goal in this situation was even more challenging. To enhance
the competition between users the ball was again animated at
the end of each trial, reaching the nearest goal automatically.
Thus, one user would always score a goal against the other, at
the end of each trial.

E. EEG Signal Processing

Our BCI was built around a classical pattern recognition
scheme, which involves the following steps:
1) acquisition of a training data set;
2) training of a subject-specific BCI model, i.e., of subject-
specific features and classifiers; more precisely, we used:
• subject-specific spatial filters obtained with the common
spatial pattern (CSP) algorithm [35];

• a linear discriminant analysis (LDA) as classifier [36],
which employs the obtained CSP features as input;

3) online use of the resulting subject-specific model.
During the acquisition of the training set, the user was asked to
perform left and right hand MI according to visual instructions
(see Section IV for details). A total of 40 training trials were
collected for each subject (20 trials from each MI class). Each
trial lasted 8 s, the instruction being displayed at 3 s. The
subject had to perform the instructed imaginary hand movement
continuously for 5 s.
Once the training data were acquired, they were used to opti-

mize CSP spatial filters. To do so, EEG signals were first band-
pass filtered in the mu and beta frequency bands (8–30 Hz).
Then, the CSP filters were optimized on these filtered EEG sig-
nals, using a 4-s time window extracted from each trial, starting
500 ms after the visual instruction. As recommended in [37],
we selected six CSP spatial filters, corresponding to the highest
and lowest eigenvalues of the generalized eigenvalue decompo-
sition used to optimize the filters.
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Fig. 5. Two users playing BrainArena in a competitive trial.

Fig. 6. Single-user mode: The user was instructed to imagine movements of the
hands to move the ball into the designated goal. The background is presented
here in white for better visibility, however the original configuration uses a black
background.

Once the CSP spatial filters were obtained, they were used
to compute input features for the LDA classifier. The features
computed were the logarithmic band power widths of the spa-
tially filtered EEG signals in the 8–30-Hz band, averaged over 1
s of signal. To train the LDA classifier, again, a 4-s time window
starting 500 ms after the visual instruction was extracted from
each trial. Then, each of these 4-s windows was subdivided into
48 1-s segments, with a step of 1/16th of a second (with overlap)
between two consecutive segments. A CSP feature vector (as
described above) was computed for each of these segments, and
labeled according to the trial label (left or right). The resulting
40 48 feature vectors were used as training data for the LDA
classifier.

Fig. 7. A collaborative trial: Users should score in the right goal. The back-
ground is presented here in white for better visibility.

During the online phase, CSP features and the LDA classifier
were used to continuously classify the last 1-s segment of EEG
signal (with a step of 1/16th of a second, with overlap, between
two consecutive segments) into one of the two classes (left or
right). Since LDA classification is based on the distance to a
separating hyperplane, this distance was normalized and used
as the basis of the feedback provided to the users.
This signal processing scheme was applied to each user, each

one ending with a specific set of CSP filters and an LDA clas-
sifier. The CSP and LDA training was performed before each
session. It should be stressed that this EEG signal processing
pipeline is independent from the paradigm used for the feed-
back (single user, collaborative, or competitive). In other words,
whenmore than one user was involved, the same processing was
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Fig. 8. A competitive trial: Users should score in opposite goals. The back-
ground is presented here in white for better visibility.

performed, just that the outputs of each user’s EEG processing
pipeline (i.e., each user’s LDA output) weremerged in the game.
This decided which mental state was dominant and deduced the
commands that produced the feedback.

F. Provisional Conclusion

We designed a complete BCI system for multiuser interaction
with a video game. We provided a high level architecture and a
first implementation using three general purpose desktop com-
puters (dual cores/4-GB RAM). Fully operational, this system
worked in real time: acquisition, EEG signal processing, clas-
sification, and feedback rendering. We achieved with our setup
a constant frame rate of 60 frames/s. The different components
were interconnected on a local network, supporting easily the
connection and reconnection of different video game programs.
We proposed three different modes for our game: solo, collab-
orative, and competitive. More versions could be easily devel-
oped and connected to the BCI system. Finally, this setup also
had monitoring and recording capabilities, thus can be used in
an experimental environment for evaluation purposes.
The following sections describe two experimental evalua-

tions we conducted to evaluate the BrainArenaBCI video game,
and the influence of a multiuser gaming experience on the BCI
performances and user preferences.

IV. EXPERIMENT 1: COMPARING SINGLE-USER VERSUS
MULTIUSER CONDITIONS

This experiment evaluated the multiuser and single-user
interaction paradigms. We aimed to study the influence of a
multiuser situation on the performances and user experience
of two users connected through BCI to the same video game
program. Only two conditions were selected for this first
evaluation: single-user condition (SOLO) versus a two-user
collaborative condition (COLLAB).
The classification accuracy during the online sessions was

used as a performance metric. The reported performances are
the maximal classification accuracy over the trial duration, as
done by Graz [38], [35]. Through subjective questionnaires we

also compared the user acceptance and enjoyment regarding the
two interaction techniques. The questionnaire was divided into
two parts. In the first part of the questionnaire, participants rated
the two paradigms on a seven-point Likert scale, over several
criteria. A second part of the questionnaire intended to gather
subjective answers to various questions regarding the tasks and
how they handled them, and their impressions on the collabora-
tive task and feedback.

A. Population

The population consisted of 20 volunteers, all of them naive
users of BCI technologies. The subjects’ age ranged from 23
to 52 years old (mean 31.1), 15 males and five females. From
this group, ten pairs were formed. In eight pairs, the participants
knew each other, and volunteered to participate together. The
two other pairs were formed randomly with the four remaining
volunteers.

B. EEG Configuration

The setup for this experiment used the apparatus previously
described, with the following configuration. EEG signals were
sampled at 512 Hz. We used eight EEG channels located around
the right and left motor cortices: C3, FC3, CP3, C1 and C4, FC4,
CP4, C2. We assumed that CSP spatial filters can be reliably
computed on this number of sensors since Ang et al. success-
fully used it with even fewer sensors (three bipolar channels
only) in their winning entry of BCI competition IV, data set 2b
[39].

C. Procedure

The procedure was inspired by the Graz BCI [40]. One ses-
sion consisted of 40 trials, 20 left and 20 right, in a random order.
At time , a cross was displayed on screen, marking the
start of the trial. At 3 s, the instruction was displayed as a
left or right arrow, instructing the user to perform left or right
MI, respectively. At time 4.250 s, the feedback began to be
displayed (only in the online phase, not in the training phase).
At time 8 s, the feedback phase ended. The pause between
each trial was randomly chosen between 1.5 and 3.5 s. Each ses-
sion lasted approximately 8 min. Participants had a 3-min break
between sessions.
The experiment consisted of five sessions. The first session

was the acquisition of a training set for the CSP filters and LDA
classifier. During this first session, no feedback was displayed,
only the cross and instructions. The following sessions were ei-
ther in the SOLO or COLLAB condition (two SOLO, two COLLAB).
Preliminary testers reported a better understanding of the in-
struction if they started in the SOLO condition. Therefore, the
first session was always in the SOLO condition, the condition
order for the other sessions being randomly chosen.
Before starting the experiment, we instructed the user on how

to perform handMI. As recommended in [41], we asked the user
to perform kinesthetic imagery (feeling the sensations of move-
ment, first person process) rather than visual imagery (seeing
yourself doing the movement, third person process).
The whole experiment, installation and explanations in-

cluded, lasted approximately 90 min.
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TABLE I
MEANS OF THE CLASSIFICATION ACCURACY (IN PERCENT) OF EVERY SUBJECTS
ON THE FOUR SESSIONS (TWO IN EACH CONDITION). THE WINNER OF EACH
PAIR (BEST MEAN OVERALL ACCURACY) IS ANNOTATED WITH A (W), AND

THE LOSER IS ANNOTATED WITH AN (L)

D. Results

Themean classification accuracies obtained in each condition
are displayed in Table I. The mean accuracy for the SOLO condi-
tion was 71.3%, while it was 73.9% for the COLLAB condition.
This difference was not found to be significant with a paired
t-test, although it did show a trend . Looking at the
course of performance over the sessions does not suggest that
a learning effect occurred. The average performance curves are
indeed rather flat. This is consistent with observations in [42]

Fig. 9. Means and standard deviations of the quantitative questionnaire grades.
A star (*) indicates a significant difference between the two conditions (

, Wilcoxon signed rank test with Bonferroni correction for multiple com-
parisons).

that suggest that there is no learning on such a small number of
sessions.
We divided the subject pool into two subgroups, according to

their performance levels. The winner subgroup consisted of the
dominant participants of each pair (best mean overall accuracy).
The loser subgroup was the other half, with the worst mean
accuracy of each pair. As shown in Table I, in the winner group,
the mean classification accuracy in SOLO condition was 75.0%,
and 80.0% in the COLLAB condition. This difference was found
to be significant with a paired t-test . The loser group
showed no significant differences between the two conditions
(SOLO: 67.5%, COLLAB: 67.8%).
From the quantitative questionnaires, we extracted the dif-

ferent grades given by the 20 participants. Fig. 9 presents the
mean and standard deviation for each criteria:
• difficulty to achieve the task (1: very difficult, 7: very
easy);

• fun (1: very boring, 7: very entertaining);
• motivation (1: not motivating at all, 7: very motivating);
• global appreciation (1: poor, 7: very good).
The questionnaire results showed significant differences with

a Wilcoxon signed rank test SOLO versus COLLAB, for the mo-
tivation and fun criteria ( with Bonferroni correction).
The differences for the other criteria were not found to be sig-
nificant.
The subjective questionnaire addressed five themes.
1) MI strategy: What was your strategy to successfully
achieve the task? Was it different in the two conditions?

2) Motivation: Did you find different motivations while per-
forming the experience alone or with a partner?

3) Impressions on the collaborative feedback: Did the feed-
back of your partner influence you? If so, how?

4) Self-evaluation of the performances: Did you find your-
self better than your partner? Three choices were available:
better/equal/worse. Participants were also asked to give de-
tails on how and why they felt such a difference.

5) Preference: What is your preferred condition, alone or with
a partner?

Table II lists the different categories and number of subjects per
category. The two major strategies used by the participants in-
volved thinking of simple hand or arm movements. The users
reported different motivations when playing the game: “not to
impede the other’s performance” or “find a better mental state
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TABLE II
DESCRIPTIVE ANALYSIS OF ANSWERS TO POST-HOC OPEN QUESTIONS

control” incorporated most participants (5/20 participants for
both), while others chose more competition-oriented answers
(score goals, be better than the other). When asked for their im-
pressions on the collaborative feedback, participants reported
negative (7/20 users), neutral (8/20 users), or positive feelings
(5/20 users) on whether they found the feedback disturbing,
purely informative, or helpful, respectively. While 7/20 partic-
ipants found themselves better than their partner, 8/20 found
no differences and 5/20 felt worse performances. Finally, the
preference question showed that 10/20 participants preferred the
single-user condition; 6/20 participants preferred the collabora-
tive gaming context.
The user impressions toward the collaborative interaction di-

vided the population into three subgroups: positive perception
(76.5% mean classification performance during collaborative
sessions), neutral perception (76.7%), or negative perception
(68.9%). The performance differences between negative per-
ception and neutral or positive perceptions were found to be
significant with a paired t-test . When looking at
the classification performance of these three subgroups during
single-user sessions, we also found to have significant differ-
ences between negative perception (67% accuracy) and neutral
(74.7% accuracy) or positive perception (76.5% accuracy).
The mean classification accuracies for the participants that

preferred SOLO over COLLAB condition were 70.1% in SOLO
sessions and 75.9% in COLLAB sessions. The difference was
found to be significant (paired t-test, ). The subgroup

that preferred the COLLAB condition achieved a mean classifi-
cation performance of 70.1% in the SOLO condition and 69.4%
in COLLAB, the difference not being significant.

V. EXPERIMENT 2: COMPARING COLLABORATIVE VERSUS
COMPETITIVE CONDITIONS

As observed in experiment 1, the introduction of a multiuser
BCI paradigm could influence the motivation and behavior of
the participants. In this second experiment, our objective was
to qualify more precisely the multiuser experience, and study
how the users handle a competitive situation compared to a col-
laborative one. We kept the best participants from the first ex-
periment and introduced the competitive condition COMPET.We
monitored the samemetrics as before, i.e., performance and par-
ticipants’ answers to a subjective questionnaire.

A. Population

We selected the eight best performing subjects based on the
classification accuracy obtained from experiment 1. Two pairs
were already formed during the first evaluation, and the two
other pairs were randomly arranged.

B. EEG Configuration

We used the same apparatus, with the following configura-
tion for the EEG acquisition. The amplifiers acquired data at
a 512-Hz sampling frequency. In order to try and improve the
quality of the CSP filters, we raised the channel number to 16
for each user: C3, C4, FC3, FC4, C1, C2, CP3, CP4, C5, C6,
Fz, Cz, FCz, CPz, Pz, and POz.

C. Procedure

This experiment was divided into seven sessions. The first
session was the training session, made of 40 trials (20 left, 20
right in a random order). The six following sessions consisted of
two random sequences of three sessions, from each of the three
conditions (SOLO, COLLAB, and COMPET). These six sessions
were shorter than in the previous evaluation (30 trials, 15 left
and 15 right in a random order) to limit the overall duration of
the experiment. The complete experiment lasted approximately
105 min.

D. Results

The classifier accuracy was computed for each user using the
same procedure as in the first evaluation. The mean classifica-
tion accuracy values of the three conditions for the eight subjects
can be found in Table III.
There was no significant difference between the collaborative

and competitive conditions (COLLAB: 75,4%; COMPET: 74,6%).
This suggests that using a competitive context rather than a col-
laborative one may not lower the performance achieved by the
users. We separated each pair to form the winner and loser sub-
groups, as we did in Section IV-D. The winner groups achieved
classification accuracies of 77.5% in SOLO, 81.67% in COLLAB,
and 79.58% in COMPET. The loser group showed inverse ten-
dency with 74.17% in SOLO, 69.17% in COLLAB, and 69.58%
in COMPET. However, none of these differences were signifi-
cant, which can be partially explained by the small number of
subjects.
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TABLE III
MEANS OF THE CLASSIFICATION ACCURACY (IN PERCENT) OF EACH SUBJECT
DURING THE THREE EXPERIMENTAL CONDITIONS. THE WINNER OF EACH

PAIR (BEST MEAN OVERALL ACCURACY) IS ANNOTATED WITH
A (W), AND THE LOSER IS ANNOTATED WITH AN (L)

TABLE IV
USER CATEGORIES AND NUMBER OF SUBJECTS PER CATEGORIES,

FOR EVERY QUESTIONNAIRE THEME

The means and standard deviations of the questionnaire
grades are presented in Fig. 10. Once again fun and motivation
showed better results with the two multiuser conditions than
with single-user interaction. There was no significant difference
after Bonferroni correction.
Finally, the subjective questionnaires were analyzed to clas-

sify the user on the same thematics as in experiment 1: strategy,
motivations, impressions toward multiuser feedback, self-eval-
uation of performances, and preferences.
The strategies used were separated in two categories (4/8

participants per category): self-centered (focus on the mental
imagery) or context-based (analyze the situation and adapt the

Fig. 10. Means and standard deviations of the quantitative questionnaire
grades.

mental state). The motivations were either competitive (3/8
users) or focused on achieving the task and scoring goals (2/8
users); 4/8 users found the multiuser feedback helpful, and 3/8
users were disturbed by it. Most of the users (5/8 participants)
found their performances equal to that of their partner. Finally,
the users equally preferred the competitive and collaborative
conditions. None preferred the single-user condition.
This second experiment represents a reliable basis to ac-

knowledge trends, however it is done on a rather small number
of subjects. In order to confirm these trends, experiments on
more subjects are necessary.

VI. DISCUSSION

The BrainArena BCI game was functional in experimental
conditions. The system managed to handle EEG signal pro-
cessing and feedback rendering in real time. The mean classifi-
cation performances over all users were above 70% in all con-
ditions. The two experiments we conducted on the BrainArena
BCI game allow us to evaluate the influence of the multiuser
interaction on users’ performance and subjective impressions.
The first evaluation on 20 naive subjects compared the

single-user situation with the multiuser situation using the
collaborative condition. Although the mean classification
performance was not significantly better in the collaborative
condition, it showed a tendency , which will have
to be confirmed in further studies. However, when analyzing
separately the best performing users and the worst performing
ones from each pair, we found a significant difference between
collaborative and single user for the best performing user only.
This means that operating a BCI in a multiuser context is
possible without any performance drop, and may even increase
the classification performances of the best performing users.
The 7/20 participants that found the collaborative feedback
disturbing reported, for example: “Too much information to
handle ” or “it’s moving too fast, it disturbs my concentra-
tion.” As this user group performed poorly in both conditions
(67% in single user, 68.9% in collaborative) we can assume that
they could not handle the visual stimuli even in the single-user
condition. The users’ self-evaluation of performances showed
unbalanced results. More participants found themselves better
than their partner, compared to those who found themselves
worse (seven and five participants, respectively). They were
right in both cases if we look at their placement in the
winner/loser classification. However, five participants could
not perceive the difference of performance, even when this
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difference was high. For example, user 1 of pair 6 perceived
equal performances while he outclassed his partner by 10%.
This can be interpreted as another evidence of the difficulty in
understanding and evaluating the collaborative feedback. These
results offer several ideas of improvement in order to make the
BrainArena BCI game more user friendly: e.g., smoothing the
real-time feedback to lower the disturbance, or extending the
trial duration to give users the time to understand what is going
on.
As the quantitative questionnaires revealed, motivation and

enjoyment showed significant differences in favor of the col-
laborative mode. Difficulty and global appreciation were not
statistically different. Thus, we can assume that a multiuser in-
teraction can be controlled with the same level of difficulty as a
single-user interaction. However, the user preferences showed
surprising results: ten subjects preferred the single-user condi-
tion and only six the collaborative one. Additionally, those who
preferred playing in a single-user condition performed better
during the collaborative task, while the subjects that preferred
the collaborative task showed no differences in performance be-
tween the two conditions. This can be interpreted in different
ways. First, we could simply assume that user preferences are
not only dependent on the performances achieved, but also on
the enjoyment and motivation to do the task. Second, several
users preferred the single-user condition just because they were,
in that case, the only cause of success or failure. The most
common motivation raised in the questionnaire was “I don’t
want to impede my partner” or “Understanding and finding a
better control strategy” (five users in both categories). Even if
they performed better in the collaborative mode, they still pre-
ferred a condition which they solely controlled. A third inter-
pretation could be related to the link between task complexity
and efforts required to achieve the task. As the collaborative
task is found more complex, the user must focus more inten-
sively, which therefore ensures higher performance. However,
when asking for a preference, the users turned to the simplest
task: the single-user game mode. This also applies to the second
group who preferred the collaborative condition: as they han-
dled the complexity of the collaborative task well, their efforts
are on a similar level in both conditions, which leads to similar
performances.
This first evaluation highlights the complex relation between

user impressions, difficulty of the task, feedback understanding,
and performance. The user preferences are not only related
to their performances or motivations to do the task. The psy-
chology plays an important role, and even more when two users
are interacting within the same context. As the user impressions
show, the effects of multiuser may be negative (e.g., “I felt very
frustrated when I didn’t manage to help my partner,” “I was
totally discouraged when I saw the other going on the other
side”) or positive (e.g., “good to have someone to help when
we don’t manage one side, “it’s better to laugh together when
we make mistakes than being frustrated when we fail alone”).
We see a high variability in the users behavior and subjective
impressions.
The second evaluation was conducted on a smaller subset

made of the best participants. As they only participated in four
sessions in the first evaluation, we cannot qualify them as trained

users, but we assume their first experience made it easier to
handle the task in one more multiuser condition : the competi-
tive mode.
When asked for their strategy to perform the mental imagery

task, all participants naturally took a higher level of abstraction:
they tried either to “focus on the mental imagery” or “analyze
the context and adapt their mental state.” In the previous eval-
uation, they were mostly focused on doing the hand mental im-
agery or arm, or manipulating an object. This group of subjects
is characterized by a competitive spirit, revealed in the ques-
tionnaires: the users only reported being motivated by “scoring
goals” or “being better than the other.”
The classification results in the three conditions showed no

significant difference (75.83% in single user, 75.42% in col-
laborative, and 74.58% in competitive). All these results have
to be interpreted with care, as the limited number of subjects
questions the relevance of further statistical analysis: additional
experiments should be evaluated to further confirm our results.
The quantitative questionnaire results also revealed no differ-
ences between the three conditions. This result suggests that
using a competitive condition over a collaborative one does not
affect the motivation and enjoyment of the users. While perfor-
mances remain the same in the three conditions, the preferences
go clearly in the multiuser direction: half the subjects preferred
the collaborative task, and the other half the competitive con-
dition. None of them preferred the single-user condition. This
further reveals that users’ preferences are not only related to the
performance achieved.
As the second experiment uses a reduced number of subjects

(eight subjects, four pairs), future work should include larger ex-
periments to evaluate the collaborative versus competitive con-
ditions in order to make stronger conclusions.
The user impressions toward the multiuser feedback were

very variable and contrasted. Further research could be focused
on finding the best feedback concept. Such feedback should be
understood easily by all users, allowing them to accurately eval-
uate their performance without giving them too much distur-
bance. The tradeoff may be very dependent on users, and finding
new adaptation techniques, supervised or not, would be useful.
The BrainArena multiuser BCI game gives every user the

same ability to control the application. Thus, disabled people
could play such a game together with healthy users with less or
identical frustration. Such multiuser BCI systems could provide
a new way of communication and interaction between a patient
and his/her relatives, based on entertainment.

VII. CONCLUSION

In this paper, we have studied the design and evaluation of a
multiuser BCI video game called BrainArena. This video game
application is based on hand MI, and allows two users to si-
multaneously play a simple football game. The players can use
left (or right) imagined hand movements to push a ball toward
the left (or right) goals. A collaborative mode enables players
to push together in the same direction, whereas a competitive
mode enables users to play a duel and try to push in oppo-
site directions. The BrainArena video game was evaluated on
20 subjects in a first experiment that compared single-user and
multiuser collaborative conditions. The eight best performers
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participated in a second experiment where we added the mul-
tiuser competitive condition. Our results show first that our mul-
tiuser video game is fully operational and that our different
scenarios can be rapidly handled by participants. Motivation
and fun were strongly increased in multiuser conditions. Inter-
estingly, the performance of the “winners” (people who per-
formed better than their partner) was found to increase in mul-
tiuser versus solo conditions, suggesting a potential benefit of
a multiuser approach. Some interesting psychological factors
or behaviors are also exhibited. When two users are playing
the same BCI game, specific feelings of frustration, hesitation,
shyness, or irritability could occur. This opens possibility for
further work, where behavioral studies could benefit from BCI
game design.
In these two experiments, most of the participants (16/20 sub-

jects) knew each other and volunteered together. This propor-
tion does not make possible any statistical analysis, however
this would be interesting to study if and to what extent this could
influence the motivations and performance of the users in the
different conditions. On a broader scale, multiuser BCI design,
for video gaming purposes or not, could also benefit from soci-
ological studies on team design, collaboration, and motivation
among teams, and how these can influence task performance.
For example, Harrison et al. addressed how deep-level relation-
ships between team members can influence performance [43].
For a review on team performances and especially on the fac-
tors that influence team performance, the interested reader can
refer to [44].
We focused our study on the classification performances and

the user experience. In future work, it would be interesting to
conduct further analysis from a neuroscience perspective, e.g.,
by comparing the event-related synchronization and desynchro-
nization (ERS/ERD) [45] between the different conditions.
Taken together our results pave the way to new designs and

new evaluations of multiuser BCI applications.
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