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Abstract— Lower extremity function recovery is one of the
most important goals in stroke rehabilitation. Many paradigms
and technologies have been introduced for the lower limb
rehabilitation over the past decades, but their outcomes indicate
a need to develop a complementary approach. One attempt to
accomplish a better functional recovery is to combine bottom-
up and top-down approaches by means of brain-computer
interfaces (BCIs). In this study, a BCI-controlled robotic mirror
therapy system is proposed for lower limb recovery following
stroke. An experimental paradigm including four states is
introduced to combine robotic training (bottom-up) and mirror
therapy (top-down) approaches. A BCI system is presented
to classify the electroencephalography (EEG) evidence. In
addition, a probabilistic model is presented to assist patients in
transition across the experiment states based on their intent.
To demonstrate the feasibility of the system, both offline and
online analyses are performed for five healthy subjects. The
experiment results show a promising performance for the
system, with average accuracy of 94% in offline and 75% in
online sessions.

I. INTRODUCTION

Functional recovery following stroke is largely dependent
on neuroplasticity [1]. To induce neuroplasticity and drive
motor recovery, rehabilitation interventions should focus on
inducing concurrent activation of sensory feedback loops and
sensorimotor motor cortex to restore corticospinal connec-
tions. Most existing rehabilitation programs use bottom-up
approaches to induce neuroplasticity [2]. In this approach,
intervention is done on the peripheral limb aiming to elicit
neuroplasticity in the central nervous system (CNS). One
example is body weight support treadmill training (BWSTT)
where patients practice stepping on a treadmill in an intensive
manner while a human therapist or a robot attempts to move
and adjust their leg into a predetermined normal one. This
approach generates ascending proprioceptive feedback that
is consistent with a normal gait, which is thought to be a
driving force for neuroplasticity. However, the effectiveness
of BWSTT is suboptimal, and whether the peripheral inter-
vention affects CNS remains unclear [3].

Another predominant rehabilitation approach to induce
neuroplasticity is the top-down approach [2]. In this ap-
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proach, the intervention is directly applied to the CNS
aiming to elicit functional improvement in the peripheral
limb. Mirror therapy is one of the most studied top-down
approaches that has shown positive effects on functional
recovery [4]. During this therapy, a mirror is used to reflect
the motion of the unaffected limb. The mirror image is
then superimposed on the unmoving affected limb. Studies
have shown that observing the mirror image can activate
the hemisphere controlling the affected limb [5] and in turn
improve its function. Since the affected limb is not moving
during the therapy, proprioceptive feedback plays a minimal
role in driving neuroplasticity.

To accomplish a better functional recovery, researchers
have tried to combine the bottom-up and top-down ap-
proaches by means of brain-computer interface (BCI) [6],
[7]. BCIs by recording, decoding, and translating measurable
brain signals into an effector action or behavior, are poten-
tially a powerful tool for being part of the rehabilitation.
One of the most popular neurophysiological phenomena
used in BCI research is the modulation of sensorimotor
rhythms through motor imagery [8], [9]. Imagination of a
limb movement produces a distinctive pattern on the motor
cortex that can be detected in real-time from the EEG
signal. Imagination of a movement, engages the primary
motor cortex in a comparable way to how motor execution
does. There are several reports of EEG-based system for
rehabilitation in stroke patients, but the majority of these
reports for stroke recovery focus on the rehabilitation of
upper limbs [7], specifically of hand movements.

In this study, an EEG-guided robotic mirror therapy system
is proposed for lower limb rehabilitation. We present a
paradigm to combine robotic training (bottom-up) and mirror
therapy (top-down) approaches. This paradigm includes four
states to synchronize the two approaches and assist patients
in lower limb rehabilitation according to their intention. To
achieve the synchronization, a BCI system is implemented,
which classifies the EEG evidence by extracting features
from collected data. The EEG evidence feeds a probabilistic
model using a finite-state Markov chain to assist patients in
transition across states.

II. METHODS

Fig. 1 illustrates the proposed EEG-guided robotic system
for lower limb rehabilitation. The system consists of the
following components: (i) a mirror placed in between legs,
which reflects the image of the non-affected leg movement;
(i) a wearable accelerometer to measure ankle range of
motion of the non-affected leg; (iii) the virtually-interfaced
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Fig. 1. Representation of the EEG-guided robotic mirror therapy system
for lower limb rehabilitation. The picture illustrates the setup from both
sides of the mirror.

Robotic Ankle and Balance Trainer (vi-RABT) [10] that
assists the ankle motion in the affected side; (iv) a BCI
component that infers the patient’s intent by classifying the
measured and processed EEG; (v) an inference component
that is a probabilistic model for the inter-state transitions
between different experiment states according to the EEG ev-
idence and robot status (e.g. on/off). The system is designed
such that the mirror reflects the movement of the unaffected
limb to form an illusory limb, which is visually superimposed
on the affected limb. By observing the illusory limb move-
ment and imagining that this is the movement performed
by the affected limb, the neurons in the sensorimotor cortex
of the injured hemisphere can be activated [8]. The neural
activities are captured and analyzed by the BCI component.
The detected EEG evidence and current status of the robot
are integrated in the inference component to assist the subject
to move the affected ankle.

A. Robotic Instrumentation

vi-RABT [10] is a 2-DOF robotic footplate that can be
effectively used in physical therapy of ankle deficits, balance
disorders and variety of mobility impairments, such as stroke.
vi-RABT is equipped with two gear-motors, which provide
actuated assistive therapy along dorsiflexion/plantarflexion
(DFPF) and inversion/eversion (INEV) axes of the ankle

Fig. 2. The virtually-interfaced robotic ankle and balance trainer (vi-RABT)
that is a robotic footplate with 2-DOF actuation.

joint and the power from both gear-motors is transmitted
by a pulley timing belt to the robotic footplate. The angular
displacement along each axis is measured by an optical en-
coder installed in the closest proximity to the footplate. In the
current setup, the robot is using the angle of the non-affected
ankle (NAFA) to move the affected ankle (AFA) along the
DFPF axes. For that purpose, DELSYS® Trigno™ wireless
systems with accelerometer sensors is used to measure the
angle of NAFA. The sampling rate and measurement range of
the accelerometer sensor are 148.1 Hz and £6g, respectively.

B. Experiment Paradigm

The experiment consists of two sessions, i.e. calibration
(offline) and online sessions. The calibration session is used
for training the BCI component. The online session includes
the proposed therapy method. Each session consists of four
states, i.e. {sy}3_,. In all states, subjects are asked to move
the NAFA, keep it in dorsiflexion for six seconds, and then
relax by following an audio trigger. Each set of measured
EEG after receiving the auditory stimulus is considered one
trial. The dorsiflexion ankle movement is defined as Go trial.
In state sg, the subject is looking to a fixed point on the wall
and the robot is off and does not move the AFA. In si, the
subject is looking in the mirror and is perceiving the mirror
image as the movement of the AFA, but the robot is off. s
is same as s1, except that the robot is on and is moving the
AFA. s3 also is the same as sg, except that the robot is on
and is moving the AFA.

During the calibration session, subjects are asked to com-
plete 60 trials for each state. They are also offered to have
a S5-minute break before starting the next state. It should be
noted that the calibration session does not have particular
order and can be performed in any combination of states.
During the online session, the process always starts from
state sg, which means the robot is off and the subject is
asked to move their NAFA without looking at the mirror.
Whenever the subject is ready for the mirror imagination
part, she/he looks at the mirror and tries to imagine the
mirror image as the movement of the AFA. By inducing
imagination, the neurons in the sensorimotor cortex of the
injured hemisphere get activated. According to the detected
EEG evidenced in BCI component that is the probabilist
measure of the patient intent, inference component will
activate the robot to assist the subject in moving the AFA.
The robot will keep moving the affected limb, as long as the
subject can focus on the mirror image. Whenever the subject
gets tired (mentally/physically) the robot will be stopped by
the inference component. During the online session, the BCI
and inference components are using the last observed EEG
evidence for every single Go trial.

C. BCI Component

EEG data is collected using g.tec g.USBamp EEG am-
plifiers (Guger Technologies OG). An active set of EEG
electrodes derived by an AC g.Gammabox is used in all the
experiments. EEG signals are collected from C2, C4, C6, and
CP4 channels in case of injury on the right hemisphere, and

1918



Cl1, C3, C5, and CP3 channels in case of injury on the left.
The EEG was sampled at 256 Hz with 60 Hz notch filter.
The reference and ground electrodes are located on right ear
lobe and nasion, respectively. As a preprocessing step, the
EEG signal is filtered with an FIR band-pass filter in 0.5-30
Hz band, which includes frequency components of the EEG
related to movement actions and imagination. The signals
are down sampled to 64 Hz. First two seconds of all trials
have been excluded to avoid movement artifacts affecting the
data analysis. At each trial, the data E; € R4*7st from all
channels is windowed to 500 ms segments, then concatenated
such that d = ch x m, where ch, m, and ng are number
of channels, number of samples in each time window, and
number of subtrial in i-th trial, respectively.

In BCI applications, extracting EEG features that provide

the most information about the intention of the user is one of
the main challenges. One method suggested for this purpose,
particularly regarding imaginations and movement actions, is
the Common Spatial Pattern (CSP) [11]. It has since become
popular in a diverse range of applications, especially in BCI
applications for extracting sensorimotor rhythms. Given the
EEG data of two classes (conditions), CSP computes spatial
filters that maximize the ratio of the variance of the data of
one class to the variance of the other [11]. The spatial filters
can be determined by solving the following optimization
problem:
WIS, W 1
WTEQW} M
where X1 and X5 are covariance matrices from class 1 and
2, respectively. First and last columns of transform matrix
W* € R¥? contain maximum variances of classes 1 and
2, and can be written as W,. = [w; wy]. The filtered signal
matrix can be expressed as:

E,=W,"E; 2)

W* = arg IIlV%X{

Finally, the feature vector is calculated by
X; = mean (|E1\) 3

where x; is the feature vector for the i-th trial and |.| is the
element-wise absolute value of the matrix.

By assuming that the feature vectors follow a Gaussian
distribution and are independent and identically distributed
(iid), x; ~ N(w,X), likelihood can be expressed by
the Gaussian probability density function. To calculate the
covariance of each class, shrinkage and regularization tech-
niques that were proposed for the regularized discriminant
analysis (RDA) classifier [12] are recruited. The covariance
of each class c is determined as:

Be(Ay) = (1—7)8c(A) + 2 trace [2:@)} I, @

where A,y € [0, 1] are shrinkage and regularization param-
eters, respectively. I, is a p x p identity matrix, p is the
dimension of feature vectors and ¢ € {0,1}. 3.(\) is the
covariance of class c¢ after passing through the shrinkage
process in (5).
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Fig. 3. The Markov chain with four states that represents the transition
between different experiment conditions.

N, is the number of observations in each class. The pa-
rameters A and -y are optimized during calibration session
using k-fold cross-validation to maximize the area under the
curve (AUC). To estimate the parameters of each class, a set
of supervised calibration sessions before starting the online
session.

D. Inference Component

The inference component includes a probabilistic model
using the concept of Markov chains to synchronize the mirror
therapy and robotic training. For the presented experiment
procedure, the inter-state transitions between states can be
defined by either of the two graphs shown in Fig. 3. In
Fig. 3(a), the graph only includes states sy and s and the
robot status is controlled by the EEG evidence, regardless
of the current robot status. The graph in Fig. 3(b), however,
includes all states of the experiment and controls the robot
based on the EEG evidence and the current robot status.
Due to the property of the Markov chain (with order one),
the states probability distribution after n trials, q,, can be
expressed as:

dn = qoP" (6)

where P is the transition matrix and qg is the initial
distribution, which is a row vector. Since the BCI component
classification is not always correct, there is an estimation
error for state s, with probability P(ej). In graph 1, any
classification error, i.e. false positives (FP) in sy or false
negatives (FN) in so can change the robot status. In fact the
robotic training will be affected by the classification errors,
which can be inconvenient for patients. In graph 2, however,
the robot status can be changed only in s; and s3. It is shown
that in the second graph (Fig. 3(b)) the FP and FN errors in s
and s3 are less than graph 1, which means P(e?) < P(ef'),
P(ef?) < P(e3") (see Appendix). Therefore, the graph in
Fig. 3(b) is selected for the probabilistic inference.

At each trial, according to the observed EEG evidence
x; and the last decision d;_i, the inference component
makes a decision for the upcoming trial d; and updates the
experiment state. Each state is defined as s; = [b; 7;], where
b; € {0,1} represents the label of brain activities, i.e. 1 for
target class (brain activities due to the mirror therapy) and
0 for non-target class, and r; € {0,1} represents the robot
status, i.e. O when it is off and 1 when it is on. The brain
activities label and robot status of each state are equivalent
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to the experiment states, such that so = [0 0], s; = [1 0],
so = [1 1], and s3 = [0 1]. To progress the therapy procedure,
the model is used transition probability P}, between states &
and [, at trial i-th, where k, [ € [0, 3]. Using MAP inference,
the transition probability P}, is determined as:

P}, = P(d; = si|x;,di—1 = sg) (7)
where d; € {SQ,Sl,SQ,Sg} and

P(d; = si|xi,di—1 = sp)

8
P(xi|d; = ;) P(d; = sy|d;—1 = sp,) ®)

where P(x;|d; = s;) is the likelihood that is given by the
BCI component. Here, it is assumed that P(x;|d; = sg) and
P(x;|d; = s3) come from the same distribution. The same
assumption exists for d; = sy, ss.

III. RESULTS

Five healthy participants (two males), 20-30 years old
were recruited to assess the performance of the proposed sys-
tem. The experiment protocol was approved by the research
ethics committee of Northeastern University. No subject
had any known neurological disorders. All participants were
right-handed and they were asked to move their dominant
side (right) ankle as the NAFA. Non-dominant side (left)
ankle was assumed as the AFA and was moved by the
robot. EEG electrodes were located on the right hemisphere
(C2, C4, C6, and CP4) to represent the brain activities of
the non-dominant side (due to contralateralization in the
human brain). All subjects performed the calibration session.
Optimal parameters for target (brain activities due to the
mirror image) and non-target classes were learned using the
calibration data. The calibration sessions consisted of 240
trials in total. The order of the states were randomized to
avoid learning effect during the calibration. The calibration
session proceed with a short break (10 minutes) followed
by the online session. All subjects started the online session
from sy and after a few trials (between 3 to 6 trials), they
were asked to look at the mirror and imagine the movement
of the dominant side limb as the movement of the non-
dominant side limb. After a few trails, depending on the
observed EEG evidences in the inference component, the
robot was turned on to move the non-dominant side ankle
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Online Session
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Fig. 4. Performance of the system in offline and online sessions. The

error bars present the standard deviation of accuracy across 10-fold cross
validation for offline session.

(s2). The online session was ended when the participants
stopped looking at the mirror and imagining the left ankle
movement. The online sessions included 30 trials on average.
Fig. 4 shows the results of the proposed system perfor-
mance in offline (calibration) and online sessions for all
participants. The accuracy results obtained by the classes
trained with offline session EEG data using 10-fold cross
validation. During the offline session, participants performed
the task at each state separately, without any transition.
During the online session, however the participants were
performing all tasks consecutively by transiting from one
state to another one. The average AUC of the classifier for
offline session is 97.54+1.52. Fig. 5 illustrates the normalized
confusion matrix that visualized the average performance of
the system in the online session. As shown, the system can
effectively distinct states sg, s, and s3. Minimum accuracy
belongs to state so that sometimes is mislabeled as ss.

Confusion Matrix
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Fig. 5. The normalized average confusion matrix across subjects for online
session.

IV. CONCLUSION AND FUTURE WORK

An EEG-guided robotic mirror therapy system has been
introduced for lower limb rehabilitation. To synchronize the
robotic training with the mirror therapy based on the user
intention, an experimental paradigm including four states
has been suggested. By benefiting from the BCI system, the
sensorimotor cortex activities were captured and analyzed
to extract EEG evidence. At each state of the experiment,
the probabilistic inference has been modeled by a finite-
state Markov chain that was defined based on the experiment
states. A preliminary experiment was conducted with five
healthy subjects including offline and online sessions to
validate the feasibility of the system. The preliminary results
show high accuracy for both offline and online sessions.

In future work, we aim to assess the therapeutic function-
ality of the system in lower limb rehabilitation. Moreover,
by quantifying a functional recovery in the framework of our
therapy method, the chain graph structure can be optimized
to maximize the therapeutic objective.
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V. APPENDIX

In this section we compare the probability of classification
error for both graphs in Fig. 3 and present that the probability
of misclassification in each state of graph 2 (Fig. 3(b)) is less
than graph 1 (Fig. 3(a)). Let P,, and P, be the transition
matrices for graph 1 and 2, which are defined as:

0
«
1-p
1-p

11—«

11—« « 11—«
Pg1|:ﬁ 1_ﬁ:|7P92 0
B

OO OoOR
o o O

9)
where for the same robot status (on/off), it is assumed
the probabilities of EEG evidence are the same, which for
Fig. 3(b) means Py; = P12 = o and Po3 = P39 = (. The
confusion matrix of the classifier for each graph is defined
as:

c - Nrn Nrp
o Nrpny Nrpl’
Nrn, Nrpp 0 0 (10)
o _|New Nemo 0 0
92 0 0 Nrp, Nrn,
0 0 Npp2 NTN2

where for both graphs, the total number of true positives
(TP) is Nrp = Nrp, + Nrp,, the total number of true
negatives (TN) is Npyny = Nrn, + Nrn,, the total number
of false positives (FP) is Npp = Ngp, + Npp,, and the total
number of false negatives (FN) is Npy = Npn, + Nrn,.-
The normalized confusion matrix C is computed as:

¢ —| Prv 1-Pry
o 1—Prp Prp
Pry, 1—Pry, 0 0
& _|1-Pn Pre 0 0
g2 0 0 Prp, 1- Prp,
0 0 1- Pry,  Pru,
(11)

Using (6), the probability distribution for the i-th trial is
defined as q; = q;—1P. To identify which graph leads to
lower classification error for each state, P(ey) is computed
for both graphs as follows:

P(ezl) _ P(Xi € Ro, d; —So), =0
P(XiGRl, di:SQ), k=2
P(XL € RQ, di = So), k=0 (12)
g P(X1€R1, di:sl), k=1
Plef?) =
P(XZGRl, dZZSQ), k=2
P(Xi € Ry, d; = S3), k=3

where R; and R, present the distributions of class 1 and 2
respectively, and P(x; € Ro, d; = sg) is the probability of
predicting the observation x; falls in Ry, however the true
label is O that belongs to sg. This probability is defined as:

P(Xi S RQ, d,‘ = So) = P(Xi S R2|di = SQ)P(dT; = So)
(13)

where P(Xi S R2|di = So) =1—Ppry and P(Xi S R1|di =
s2) = 1 — Prp. For graph 1, by assuming q;—1 = [¢ 1—¢],
the misclassification errors are calculated as:

Pleg') =lg(1—a)+(1—q)B](1 - Pry)
P(eg') =lga+ (1 -q)(1-B) (1 - Prp)

For graph 2, by assuming q;—1 =[¢ 0 1—g¢ 0], the error
for each state is calculated as:

P(eg’) =q(1—a)(l - Pry,)

P(€£1]2) :qa(l_PTP1)7

P(e3?) =(1-q)(1-p)1 - Prp,),

P(egz) :(17Q)6(17PTN2)7
Since the classifier accuracy for each class is the same
for both graphs, P(ef') = P(ef?) + P(ef?), which means
P(ef?) < P(e'). Equivalently, P(eJ') = P(ef?) + P(e5?),
which means P(ef*) < P(e3"). This shows that the proba-
bility of misclassification in s; and s3 that control the robotic
training in graph 2 is less than sy and s, in graph 1.

(14)

5)
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