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Highlights 

 We introduce a novel hybrid BCI that uses EEG and fTCD as brain sensing modalities. 

 Flickering mental rotation and word generation mental tasks were employed. 

 Features derived from EEG and fTCD power spectrum were calculated. 

 Mutual information and SVM were used for feature selection and classification. 

 The proposed hybrid BCI outperforms EEG-fNIRS BCIs in literature in terms of speed. 

 
 

Abstract— Background: Hybrid brain computer interfaces (BCIs) combining multiple brain imaging modalities have been proposed recently 

to boost the performance of single modality BCIs. New method: In this paper, we propose a novel motor imagery (MI) hybrid BCI that uses 

electrical brain activity recorded using Electroencephalography (EEG) as well as cerebral blood flow velocity measured using functional 

transcranial Doppler ultrasound (fTCD). Features derived from the power spectrum for both EEG and fTCD signals were calculated. Mutual 

information and linear support vector machines (SVM) were employed for feature selection and classification.    Results: Using the EEG-fTCD 

combination, average accuracies of 88.33%, 89.48%, and 82.38% were achieved for right arm MI versus baseline, left arm MI versus baseline, 

and right arm MI versus left arm MI respectively. Compared to performance measures obtained using EEG only, the hybrid system provided 

significant improvement in terms of accuracy by 4.48%, 5.36%, and 4.76% respectively. In addition, average transmission rates of 4.17, 5.45, 

and 10.57 bits/min were achieved for right arm MI versus baseline, left arm MI versus baseline, and right arm MI versus left arm MI respectively. 

Comparison with existing methods: Compared to EEG-fNIRS hybrid BCIs in literature, we achieved similar or higher accuracies with shorter 

task duration. Conclusions: The proposed hybrid system is a promising candidate for real-time BCI applications. 

 
Keywords—Electroencephalogram, Functional Transcranial Doppler Ultrasound, Hybrid Brain Computer Interfaces, Mutual 

Information, Classification. 

I. INTRODUCTION 

RAIN computer interfaces (BCIs) translate brain activity into control signals that can be used to command external devices 

such as prosthetic limbs or wheelchairs [1],[2]. The main objective of BCIs is to either bypass or restore neuromuscular activity 

for individuals experiencing neurological deficits that cause motor impairment such as stroke, Parkinson’s disease, and 

amyotrophic lateral sclerosis [3]. Therefore, developing BCIs is essential for those individuals to communicate with the 

surrounding environment using only their brain signals.  In addition, BCIs have other diverse applications such as control of 
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humanoid robots [4], and aircrafts [5] as well as controlling virtual reality environments [6]. 

To design noninvasive BCI systems, different modalities have been investigated including near-infrared spectroscopy (NIRS) 

[7], functional magnetic resonance imaging (fMRI) [8], and magnetoencephalography (MEG) [9]. However, these modalities have 

limitations that hamper BCI usage outside controlled laboratory environments.  For instance, fMRI and MEG are expensive 

nonportable equipment that can be used efficiently only in a controlled environment [10]. On the other hand, NIRS does not require 

highly controlled environment, but it lacks the speed needed for real-time BCIs [11]. Given these limitations of the previously 

mentioned modalities, most of the existing BCIs use electroencephalograph (EEG) as the input modality since it is portable and 

cost-effective. Moreover, it has high temporal resolution, therefore, it can be used for developing real-time BCIs.  

Among the existing diverse EEG-based BCI categories, BCIs based on motor imagery have been intensively used in 

rehabilitation applications that seek assisting disabled individuals as well as restoring individual’s physical and cognitive functions 

lost due to neural disorders [12]. Motor imagery (MI) is the process of movement imagination without any actual muscle activation. 

It was found that the MI process activates the same brain regions activated during the actual physical movement [13]. Therefore, 

during the rehabilitation process, patients with motor impairments practice MI process to activate the injured brain motor regions 

[14]. Several studies were performed on both healthy participants and participants with physical and/or speech impairments to 

examine the feasibility of motor imagery for BCI applications [13], [15], [16]. Towards motor recovery after stroke, several motor 

imagery BCIs with robotic feedback were developed [14], [17]. Such systems decode the motor imagery signals into robot assisted 

movements and it was shown that such systems yielded motor improvements.   

To boost the performance of MI-based BCI, many studies suggested using NIRS as a second modality to be simultaneously 

acquired with the EEG [18], [19] since it is less sensitive to electrical noise as well as motion artifacts [20]. However, as mentioned 

earlier, NIRS is difficult to setup and has a very slow response time [21]. Therefore, to avoid NIRS disadvantages, we suggest 

Functional transcranial Doppler (fTCD) ultrasound to be simultaneously recorded with EEG for MI-based BCI. Compared to 

NIRS, fTCD has a faster response time [22]. In addition, it is easier to setup and requires less number of sensors. fTCD assesses 

the cerebral blood velocity using two ultrasound sensors placed on the left-side and right-side transtemporal window located above 

the zygomatic arch [23]. It was observed that signals recorded using fTCD change with different cognitive tasks.  Based on this 

observation, a study suggested that it is possible to develop a BCI that is based on fTCD modality using mental rotation and word 

generation cognitive tasks [24]. However, an observation period of 45 seconds was required to achieve acceptable accuracy which 

is not practical for a real-time BCI. Towards more efficient fTCD-based BCIs, shorter observation periods (15-20 seconds) were 

achieved [25], [26].  In a recent study, we examined fTCD as an approach for real-time BCI [27] and achieved approximately 80% 

accuracy within 5 seconds of the task onset.  

It was found that the cerebral blood velocity in left and right middle cerebral arteries (MCAs) changes depending on whether 

the moving arm is the left or the right one [28]. Such findings suggest that fTCD might be promising for MI-based BCIs. Inspired 

by these findings as well as the results we achieved previously with fTCD as a candidate for real-time BCIs, we propose MI-based 

hybrid BCI that uses both EEG and fTCD modalities. Such system will acquire the electrical activity of the brain using the EEG 

and the vascular response of the brain using the fTCD. We claim that combining these modalities will result in a system with higher 

performance accuracy, faster response time, and less setup complexity. In this paper, cognitive tasks including left arm MI and 

right arm MI are considered for the BCI design. Three different binary selection problems were formulated to study the feasibility 

of 2-class BCI. The first two classification problems are formulated to differentiate between each cognitive task and the baseline 

while the third problem aims at classification of the left arm and right arm MI tasks against each other. For the 3 binary selection 

problems, features derived from the power spectrum for both EEG and fTCD signals were calculated. In addition, mutual 

information and linear support vector machines (SVM) were used for feature selection and classification.  

Fig. 1. Stimulus presentation for the hybrid BCI system. 
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II. MATERIALS AND METHODS 

A. Simultaneous Data Acquisition 

EEG was collected using 16 electrodes placed according to the 10-10 system over frontal, central, and parietal lobes at positions 

Fp1,Fp2,F3,F4,Fz,Fc1,Fc2,Cz,P1,P2,C1,C2,Cp3, Cp4,P5,and P6. Left mastoid was used as the reference for all participants.  A 

g.tec EEG system with g. USBamp, a bio-signal amplifier, was used in this study. It included 16 24-bit simultaneously sampled 

channels with an internal digital signal filtering and processing unit and sampling rate up to 38.4 kHz. The data were digitized with 

a sampling rate of 256 samples/sec and filtered by the amplifier’s 8th order bandpass filter with corner frequencies 2, 62 Hz in 

addition to 4th order notch filters with corner frequencies 58, 62 Hz. Through band-pass filter, our aim was to remove possible DC 

drift and high frequency noise. Processed data were transferred from the amplifiers to a laptop via USB 2.0.  

The fTCD data was collected with two 2 MHz transducers using SONARA TCD system of 145 Mw ultrasonic power. These 

transducers were placed on the left and right sides of the transtemporal window located above the zygomatic arch. Since the middle 

cerebral arteries (MCAs) provide approximately 80% of the brain with blood [29], the fTCD depth was set to 50 mm which is the 

depth of the mid-point of the MCAs [30]. 

B. Visual Presentation Design 

In this presentation scheme, a basic motor imagery task is visualized while acquiring EEG and fTCD simultaneously.  As seen 

in Fig. 1, the screen shows a horizontal arrow pointing to the right representing right arm MI and another horizontal arrow pointing 

to the left representing left arm MI as well as a fixation cross that represents the baseline. Each trial lasts for 10 s. During each 

trial, a vertical small arrow, shown in Fig. 1, points randomly to one of the 3 tasks for duration of 10 s and the user has to take rest 

if the vertical arrow points to the fixation cross or to imagine moving either left or right arm depending on which MI task is 

specified by the vertical arrow. A total of 150 trials are presented per session.  

C. Participants 

10 healthy right-handed subjects including 4 males and 6 females participated in the experiment with ages ranging from 23 to 

32 years old (mean and standard deviation: 26.7±2.3). The experiment lasted for approximately 1 hour and 15 min including the 

time required for the setup. All research procedures were approved by local Institutional Review Board (IRB) under the University 

of Pittsburgh IRB number of PRO16080475.  Participants signed a written informed consent before starting the experiment. During 

the experiment, subjects were seated in a comfortable chair approximately 1 m away from the screen. Each participant attended 

one session.  

D. Feature Extraction and Fusion 

The 16-channel EEG data as well as the two-channel fTCD data corresponding to each task were segmented and extracted. For 

each segment, the power spectrum was estimated using Welch method [31].  The features corresponding to each segment included 

the raw power spectrum for that segment. The number of features obtained from each power spectrum was reduced by considering 

the average power over a narrow range of frequencies instead of using all the power spectrum values at all frequency bins as 

features. The average power over each consecutive 2 Hz for the EEG data was obtained. Since the fTCD signal has much higher 

bandwidth (≈2.5 KHz) compared to the EEG signals (≈60 Hz), and considering the need to reduce the number of features, the 

average power over each consecutive 50 Hz for the fTCD data was obtained to form reduced power spectrums. For each 

observation, EEG feature vector was formed by concatenating reduced power spectrums corresponding to the 16 EEG segments 

while fTCD feature vector was formed by concatenating reduced power spectrums corresponding to the 2 fTCD segments. For 

each observation, the overall feature vector was formed by concatenating the EEG feature vector and the fTCD feature vector.   

The feature vector representing each trial contained 420 features including 320 EEG features as well as 100 fTCD features. 

Specifically, 20 features were extracted from each EEG electrode giving a total of 320 features whereas each fTCD sensor 

contributed 50 features giving a total of 100 fTCD features.    

E. Feature Selection 

Feature selection algorithms are extensively used to improve the prediction accuracy and to reduce computational expenses 

which is a major issue for real time applications such as BCIs. In this paper, mutual information [32] was used to select the most 

significant features out of the original feature vector. Mutual information measures how much information can a random variable 

inform about another variable.  In the context of feature selection, mutual information measures the contribution of each feature 

towards making a correct decision and assigns each feature a score based on that contribution [33]. In other words, the higher the 

mutual information score is, the higher the contribution of that feature in making a correct classification. The scores were arranged 

in a descending order. To choose the number of features to be selected, we calculated the cumulative distribution function (CDF) 

for the scores.  CDF thresholds corresponding to the probabilities ranging from 0.5 to 0.95 with a step of 0.05 as well as 0.98 and 

0.99 were calculated. The features corresponding to these CDF thresholds were selected. The performance measures (accuracy, 

sensitivity, and specificity) corresponding to each CDF threshold were calculated. 
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F. Classification 

Support vector machine (SVM) is a supervised machine learning algorithm [34]. Basic SVM is a linear classifier that seeks 

finding optimal hyper-plane with the largest distance to the closest observation in the training dataset by solving an optimization 

problem using linear programming.  Given that the observations in the feature space are not typically linearly separable, non-linear 

kernels are usually used to transform observations to a higher dimensional feature space where the classes can be separated linearly. 

Common kernels include polynomial, and radial basis function (RBF) kernels.  However, we used linear SVM in this paper to 

reduce computational expenses.  

To investigate the feasibility of 2-class BCI, three binary classification problems were formulated including right arm MI versus 

baseline, left arm MI versus baseline, and right arm MI versus left arm MI. Based on the classification results, we calculated some 

performance measures to evaluate the hybrid system. These measures included accuracy, sensitivity, specificity, and information 

transfer rate (ITR), known also as the bit rate, given by (1).  

𝐵 = 𝑙𝑜𝑔2(𝑁) + 𝑃𝑙𝑜𝑔2(𝑃) + (1 − 𝑃)𝑙𝑜𝑔2 (
1 − 𝑃

𝑁 − 1
)           (1) 

 

where N is the number of classes, P is the classification accuracy and B is the data transmission rate per trial. 

G. Evaluation of the Effectiveness of the Hybrid System 

The Wilcoxon signed-rank test [35]  is a nonparametric hypothesis test used to assess  two groups with paired observations. The 

null hypothesis assumes that the difference between the 2 groups follows a zero-median distribution. The Wilcoxon test returns 

the p-value for that null hypothesis. To evaluate the significance of the EEG-fTCD combination compared to the system using 

EEG only, Wilcoxon signed-rank test was used to statistically compare the accuracies and bit rates obtained using the combination 

to those obtained using EEG only. In particular, EEG-fTCD accuracy vector as well as EEG only accuracy vector containing the 

accuracies of the 10 participants represented the two groups to be compared.  Moreover, same comparison was performed between 

EEG-fTCD bit rate vector and the bit rate vector obtained using EEG only. 

III. RESULTS 

Subject-specific classification was performed on each participant using leave-one-out cross validation. For each participant, we 

analyzed the accuracy profile across time using an incremental window the width of which increases by 1 s. The maximum width 

for the incremental window is 10 s which represents the trial length. The accuracy analysis was performed using 12 different CDF 

thresholds corresponding to probabilities ranging from 0.5 to 0.95 with 0.05 step as well as the thresholds corresponding to 

probabilities of 0.98, and 0.99.  Therefore, 12 different accuracy profiles across time were obtained per participant.  Average 

performance measures over all participants were obtained using subject-independent and subject-specific CDF thresholds. For 

subject-independent threshold, the maximum accuracy at each CDF threshold was obtained for each participant yielding 12 

different accuracies for each participant corresponding to the 12 CDF thresholds. For each threshold, the average accuracy over all 

the 10 participants was obtained. The threshold at which the maximum accuracy was achieved was selected as the general CDF 

threshold that can be used with all participants. For subject-specific thresholds, the maximum accuracy across all the CDF 

thresholds for each subject was obtained and considered as the subject’s performance accuracy. Therefore, in subject-specific 

analysis, each subject might have different CDF threshold that corresponds to his/her maximum performance accuracy. 

Tables 1 through 3 show the maximum accuracy achieved by each participant and the corresponding time calculated using the 

EEG-fTCD combination. Corresponding sensitivity and specificity values are reported in detail in Tables A1-A6 in the appendix 

section of this paper. Here, in the results section, we report only the average sensitivities and specificities. To reveal the significance 

of the hybrid system, same performance measures were calculated using EEG only and fTCD only with the same time interval at 

which the EEG-fTCD combination gives the maximum accuracy as seen in Tables 1-3. Transmission rates corresponding to the 

accuracies and times listed in Tables 1 through 3 were also calculated for each binary problem using EEG data, fTCD data, and 
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EEG-fTCD combination as seen in Fig. 2, 3, and 4. Fig. 5 compares average bit rates obtained using subject-independent and 

subject-specific thresholds for the 3 binary problems. Tables 4, and 5 list the p-values representing the significance of the EEG-

fTCD  

hybrid system. These p-values are calculated by statistically comparing the EEG-fTCD accuracy/bit rate vector with the EEG only 

accuracy/bit rate vector for all the binary selection problems when subject-independent and subject-specific CDF thresholds are 

TABLE 1 

Maximum accuracy (Acc) and the corresponding time for each subject using hybrid system, EEG only, and fTCD only.  These measures 
were obtained for right arm MI vs baseline problem.   

 Subject-independent threshold Subject- specific threshold 

Sp _EEG  

Acc_EEG  

Sub_ID Time(s) Acc_EEG Acc_fTCD Acc_Hybrid Time(s) Acc_EEG Acc_fTCD Acc_Hybrid 

1 10 91.67% 57.29% 93.75% 10 91.67% 59.38% 94.79% 

2 10 83.33% 56.26% 83.33% 7 91.67% 61.46% 92.71% 

3 2 79.17% 45.83% 84.38% 7 81.25% 51.04% 86.46% 

4 9 81.25% 55.21% 87.50% 9 81.25% 55.21% 87.50% 

5 9 87.50% 61.46% 90.63% 9 87.50% 61.46% 90.63% 

6 4 72.92% 56.25% 82.29% 7 85.42% 56.25% 86.46% 

7 6 79.17% 56.25% 83.33% 6 80.21% 47.92% 86.46% 

8 7 80.21% 66.67% 89.58% 7 81.25% 69.79% 91.67% 

9 5 73.96% 61.46% 71.88% 5 71.88% 50.00% 76.04% 

10 10 86.46% 69.79% 90.63% 10 86.46% 69.79% 90.63% 

Mean 7.2 81.56% 58.65% 85.73% 7.7 83.85% 58.23% 88.33% 

 

TABLE 2 

Maximum accuracy (Acc) and the corresponding time for each subject using hybrid system, EEG only, and fTCD only.  These 

measures were obtained for left arm MI vs baseline problem.   

 Subject-independent threshold Subject- specific threshold 

Sp _EEG  

Acc_EEG  

Sub_ID Time(s) Acc_EEG Acc_fTCD Acc_Hybrid Time(s) Acc_EEG Acc_fTCD Acc_Hybrid 

1 10 88.66% 74.23% 93.81% 10 87.63% 65.98% 97.94% 

2 7 93.81% 58.76% 92.78% 7 91.75% 65.98% 93.81% 

3 8 80.41% 46.39% 89.69% 4 81.44% 51.55% 93.81% 

4 2 73.32% 

 

50.52% 74.23% 5 78.35% 61.86% 81.44% 

5 8 77.32% 43.30% 80.41% 9 87.63% 53.61% 87.63% 

6 2 85.57% 52.58% 86.60% 3 74.23% 53.61% 86.60% 

7 3 88.66% 54.64% 90.72% 3 88.66% 54.64% 90.72% 

8 9 86.60% 55.67% 88.66% 9 85.57% 50.52% 92.78% 

9 5 74.23% 48.45% 79.38% 5 74.23% 48.45% 79.38% 

10 9 87.63% 55.67% 88.66% 6 91.75% 47.42% 90.72% 

Mean 6.3 83.61% 54.02% 86.49% 6.1 84.12% 55.36% 89.48% 

 

TABLE 3 
Maximum accuracy (Acc) and the corresponding time for each subject using hybrid system, EEG only, and fTCD only.  These measures 

were obtained for left arm MI vs right arm MI.   

 Subject-independent threshold Subject- specific threshold 

Sp _EEG  

Acc_EEG  

Sub_ID Time(s) Acc_EEG Acc_fTCD Acc_Hybrid Time(s) Acc_EEG Acc_fTCD Acc_Hybrid 

1 1 86.67% 44.76% 86.67% 1 82.86% 51.43% 93.33% 

2 5 75.24% 38.10% 75.24% 5 75.24% 38.10% 75.24% 

3 10 73.33% 46.67% 75.24% 6 71.43% 69.52% 81.90% 

4 1 82.86% 45.71% 83.81% 2 81.90% 53.33% 85.71% 

5 1 78.10% 50.48% 81.90% 1 78.10% 50.48% 81.90% 

6 3 85.71% 42.86% 83.81% 3 85.71% 42.86% 83.81% 

7 4 75.24% 44.76% 71.43% 4 71.43% 43.81% 79.05% 

8 7 89.52% 45.71% 92.38% 9 96.19% 50.00% 97.14% 

9 1 70.48% 44.76% 71.43% 1 70.48% 44.76% 71.43% 

10 1 65.71% 62.86% 68.57% 2 62.86% 66.67% 74.29% 

Mean 3.4 78.29% 46.67% 79.05% 3.4 77.62% 51.10% 82.38% 
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used for feature selection.  

A. Right/Left arm MI vs Baseline  

Table 1 shows the maximum accuracies and corresponding times for right arm MI versus baseline problem using subject-

independent and subject-specific thresholds while appendix Tables A1 through A4 show details about sensitivity and specificity 

Fig. 2. Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and fTCD only for right arm MI vs baseline 

problem with a) subject-independent threshold b) subject-specific thresholds. 

Fig. 3. Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and fTCD only for left arm MI vs baseline 

problem with a) subject-independent threshold b) subject-specific thresholds. 

 

Fig. 4. Transmission rates for each participant (p) calculated using both EEG and fTCD, EEG only, and fTCD only for right arm MI vs left arm MI 
problem with a) subject-independent threshold b) subject-specific thresholds. 

 

                                                 a)                                                                                                                             b) 

                                                 a)                                                                                                                             b) 

                                                 a)                                                                                                                             b) 
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values for each individual.  For subject- independent threshold analysis, average accuracy, sensitivity and specificity of 

85.73%,87.31%, and 83.86% were achieved using both EEG and fTCD within 7.2 s of the cognitive activity onset. In the meantime, 

using EEG only, we obtained 81.56%,85.19%, and 77.27%   average accuracy, sensitivity and specificity respectively.  

Despite the low fTCD accuracy of 58.65%, when combined with EEG, fTCD data boosted the overall performance of the hybrid 

system with average accuracy increase of 4.17% compared to the accuracy obtained with the EEG only. As shown in Table 1 and 

Fig. 2. (a), the EEG-fTCD combination scored higher accuracy and bit rate for 8 out of the 10 participants. In terms of statistical 

comparison, as seen in Tables 4, and 5 the differences between hybrid and EEG only performance measures were shown to be 

significant as they correspond to a p-value of 0.012 in terms of accuracy comparison and p-value of 0.0078 in terms of bit rate 

comparison.  

On the other hand, same performance measures were calculated for right arm MI versus baseline problem using subject-specific 

thresholds as shown in Table 1. It was found that the EEG-fTCD combination achieved 88.33%, 90.96%, and 85.23% average 

accuracy, sensitivity, and specificity respectively within 7.7s compared to 83.85%. 86.92%, and 80.23% obtained by EEG only 

and 58.23%, 61.92%, and 53.86% obtained by fTCD only.  The average accuracy difference between the hybrid combination and 

the EEG only was 4.48%.  As seen in Fig. 2. (b), EEG-fTCD combination achieved higher bit rates compared to EEG only for all 

of the participants using subject-specific thresholds. However, Fig,5 shows that subject-independent threshold obtained slightly 

higher average transmission rate 4.19 bits/min of compared to 3.87 bits/min for subject-specific threshold. In terms of statistical 

comparison, the EEG-fTCD combination achieved higher accuracy and bit rate compared to EEG only for all the participants with 

a p-value of 0.002 for both accuracy and bit rate (Tables 4, and 5). 

Table 2 shows the performance measures for left arm MI versus baseline problem using subject-independent and subject-specific 

thresholds. Using subject-independent threshold, average accuracy, sensitivity and specificity of 86.49%, 87.55%, and 85.23% 

TABLE 4 

P-values representing significance of the EEG-fTCD system in terms of 

accuracy for the binary problems using subject-independent and subject-

specific CDF thresholds. 

Threshold 
Right MI vs 

Baseline 

Left MI vs 

Baseline 

Right MI vs 

Left MI 

Subject-independent 0.0117 0.0098 0.3828 

Subject-specific 0.002 0.0078 0.0195 

 

TABLE 5 
P-values representing significance of the EEG-fTCD system in terms of bit 

rates for the binary problems using subject-independent and subject-

specific CDF thresholds. 

Threshold 
Right MI vs 

Baseline 

Left MI vs 

Baseline 

Right MI vs 

Left MI 

Subject-independent 0.0078 0.0059 0.2500 

Subject-specific 0.0020 0.0078 0.0195 

 

 

 

Fig. 5. Average transmission rates calculated using EEG-fTCD 

combination for the 3 binary problems with subject-independent and 
subject-specific thresholds. 
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were obtained using EEG-fTCD combination within 6.3s.  EEG only scored 83.61% accuracy, 85.09% and 81.82% specificity. A 

difference of 2.89% was achieved with 0.0098 p-value of as seen in Table 4. In terms of bit rates, a p-value of 0.0059 was achieved 

as shown in Table 5. The hybrid system obtained higher accuracies and bit rates compared to EEG for 9 out of 10 subjects.  In 

contrast, using subject-specific threshold, an average accuracy difference of 5.36% was achieved with a p-value of 0.0078. In terms 

of bit rates, also, a p-value of 0.0078 was achieved as seen in Table 5. For 8 out of 10 participants, EEG-fTCD scored higher 

accuracy and bit rate compared to EEG only. EEG-fTCD scored 89.48% accuracy, 91.89% sensitivity, and 86.59% specificity 

within 6.1s while EEG only scored   84.12% accuracy, 86.42% sensitivity, and 81.36% specificity. Considering Fig. 3, we obtained 

higher bit rates using EEG-fTCD combination   compared to bit rates generated using EEG only and fTCD only. In addition, as 

seen in Fig. 5, subject-specific thresholds achieved 6.02 bits/min average bit rate compared to 5.45 bits/min for subject-independent 

threshold. 

B. Right arm MI vs left arm MI 

The maximum accuracies and corresponding times for right arm MI versus left arm MI are shown in Table 3 for subject-

independent and subject-specific threshold respectively. See also appendix Tables A5, and A6 for details about sensitivity and 

specificity values for each individual. Right arm MI versus left arm MI classification achieved 79.05%, 79.04%, and 79.06% 

average accuracy, sensitivity and specificity respectively using EEG-fTCD combination within 3.4 s while EEG data only obtained 

average accuracy, sensitivity and specificity of 79.29%, 78.08%, and 78.49% respectively. The average accuracy difference was 

low and insignificant (p-value=0.3828) according to Table 4. However, subject-specific thresholds obtained higher performance 

measures as, within 3.4 s, it achieved 82.38% average accuracy, 82.12% sensitivity and 82.64% specificity using the EEG-fTCD 

combination and 77.62%, 78.65%, and 76.60% using EEG only leading to a significant average accuracy difference of 4.76 % 

with 0.0195 p-value as seen in Table 4.  The EEG-fTCD combination scored higher accuracy for 8 out of 10 participants. On the 

other hand, bit rates for each participant were calculated and visualized as seen in Fig. 4. It can be noted that the bit rate difference 

between EEG-fTCD combination and EEG only based on subject-specific threshold is much higher compared to the same 

difference obtained using subject-independent threshold (p-value of 0.25 compared to p-value of 0.0195). On average, from Fig. 

5, 10.57 bits/min and 9.91 bits/min were achieved using subject-specific and subject-independent thresholds respectively. 

  By Inspecting the selected significant features across all participants for the right arm MI versus left arm MI problem, it was 

found that, as seen in Fig. 6, across all electrodes, the EEG average power spectrum values at frequencies up to 2 Hz (delta 

frequency band) are the most common selected features across participants. Moreover, it was found that the common selected 

features belonging to theta (5-8 Hz) and mu (8–13 Hz) bands are coming from electrodes Fp1, Fp2, F3, and F4 while the common 

features belonging to beta (16–28 Hz) band are associated with electrodes C1, C2, Cp3, Cp4, P5, and P6. As for the fTCD, the 

common significant features were found at frequency bands 550-600, 2000-2050 and 2150-2200 Hz for the right fTCD channel 

and at frequency band 2050-2100 Hz for the left fTCD channel.  

IV. DISSCUSSION 

Considering the performance measures reported for the 3 binary classification problems we studied, it is noted that subject-

specific thresholds achieved higher performance measures compared to subject-independent threshold. However, the EEG-fTCD 

combination for right/left MI versus baseline problems was proven to be significant compared to EEG only using also subject-

b) a) 

Fig. 6. 2D histogram of the significant features during right arm versus left arm MI at each channel and each frequency window of 

width 2Hz for EEG and 50 Hz for fTCD. The heat maps demonstrate, across all participants, how many times any of the features 
within each channel were considered significant.   a) EEG histogram for 16 electrodes    b) fTCD histogram for right fTCD channel 

(CH1) and left fTCD channel (CH2). 
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independent thresholds as seen in Tables 4, and 5. Thus, it is possible to use subject-independent thresholds for right/left MI versus 

baseline problems. In this case, same analysis can be performed for all participants and no parameter selection (CDF threshold) 

needs to be performed for each participant. In contrast, the EEG-fTCD combination was shown to be significant for right arm MI 

versus left arm MI problem using only subject-specific thresholds. Thus, CDF threshold has to be optimized for each participant 

separately. In terms of accuracy, right/left arm MI versus baseline problems achieved higher accuracy compared to right arm MI 

versus left arm MI.  In contrast, it took approximately 7s on average for right/left MI versus baseline problems to achieve maximum 

accuracy while right arm MI versus left arm MI problem obtained maximum accuracy within approximately 3 s. Consequently, 

right arm MI versus left arm MI achieved the highest transmission rate of 10.57 bits/min.  

Despite the high accuracies obtained in a previous study with the fTCD data only [27], in this paper, we obtained low accuracy 

with fTCD data only due to several reasons. It is well known that fTCD can differentiate imagery and analytical tasks since 

analytical tasks induce higher blood velocity in left MCAs while imagery tasks induce bilateral activation. However, in this paper, 

both tasks are imagery tasks which makes the classification problem harder to solve.  In addition, in the previous study, a 15-min 

baseline period was recorded before starting the tasks to stabilize the cerebral blood flow. Moreover, a resting period of 45 s was 

inserted between consecutive tasks. In this paper, no baseline/rest periods were added to stabilize the cerebral blood flow since 

such periods will reduce the communication speed. In fact, the baseline was shown at random times since it was designed as a task 

that resembles the condition in which the BCI user does not intend to produce a command. Moreover, baseline will be used later 

to normalize data across all participants such that all the data can be employed in one machine learning problem to infer user intent 

based on data from other users. This concept is known as transfer learning.  
The study presented in [28] proved that the cerebral blood velocity during right arm movement increases significantly in the 

contralateral MCAs than the ipsilateral MCAs while left arm movement induces bilateral activation. One of the objectives behind 

this paper was to confirm if the same phenomenon happens during motor imagery.  To achieve this aim, we calculated the difference 

between left and right fTCD channels in both time and frequency domains during left and right motor imagery tasks. In time 

domain, we calculated the difference between average envelope signals of left and right fTCD channels during left and right motor 

imagery tasks as shown in Fig. 7. (a). Moreover, in frequency domain, we calculated the difference between average values of the 

fTCD power spectrum features, described in section 2(D), of left and right fTCD channels during left and right motor imagery 

tasks as seen in Fig. 7 (b).  It was found that the difference between left and right channels is much higher for the right arm motor 

imagery with the left channel giving higher feature values while a smaller difference between the 2 channels was observed during 

left arm motor imagery as seen in Fig. 7 (a). This difference (CH2-CH1) during left arm motor imagery was much smaller than the 

difference during right arm motor imagery in the frequency ranges from 500 Hz to 750 Hz and from 1100Hz to 1800 Hz as shown 

in Fig. 7 (b). The reported results conform with the findings obtained using actual physical right arm movement [28] as the 

contralateral MCAs showed higher activation compared to the ipsilateral MCAs. In contrast, left arm motor imagery did not 

produce bilateral activation as expected. However, the difference in feature values between left and right fTCD channels during 

left arm motor imagery was smaller at specific frequency ranges.  

In summary, as described above, through our time and frequency domain analyses to compare our work with [28], we showed 

that motor imagery induces differences in fTCD that could enable the separation among right arm MI vs left arm MI vs baseline.  

Table 6 shows comparison between our method and the existing hybrid EEG-fNIRS BCIs that employ motor imagery tasks [36], 

[37], [38], [39], [40]. Comparisons were performed in terms of trial length and accuracy. In table 6, we included the accuracies for 

the three binary problems achieved using subject-specific thresholds. The proposed hybrid BCI outperformed all methods in 

comparison in terms of trial length since it does not require baseline/rest periods before/after each task. Therefore, we claim that 

the proposed hybrid BCI is faster than EEG-fNIRS BCIs and it can be used to design real-time BCI applications especially that, 

after the presentation of 10-s trial, the user intent can be identified within milliseconds. In terms of accuracy, we achieved similar 

or higher accuracies with shorter task duration. However, the system suggested by Buccino et al. [40] obtained 94.20% accuracy 

which is higher than the best accuracy achieved by our system, but that system is slower than ours since it requires 6 s baseline 

before starting each trial.  

TABLE 6 

Comparison between the proposed hybrid system and the state of the art hybrid EEG-fNIRS BCIs employing motor imagery tasks. 

Method BCI Type Task Type Accuracy 
Trial length (s) 

Task Baseline/rest 

[36] Fazli et al., 2012 EEG+fNIRS Right/left hand gripping MI 83.20% 15 6/0 

[37] Blokland et al., 2014 EEG+fNIRS Finger & thumb tapping MI /Rest 79.00% 15 0/30±3 

[38] Yin et al., 2015 EEG+fNIRS Right hand clenching force/ speed MI 89.00% 10 0/21±1 

[39] Koo et al. 2015 fTCD+NIRS Right/left hand grasp MI 88.00% 15 0/60 

[40] Buccino et al., 2016 EEG+fNIRS Right/left arm raising & hand gripping MI 72.20% 6 6/0 

[40] Buccino et al., 2016 EEG+fNIRS Arm raising & hand gripping MI /Rest 94.20% 6 6/0 

Proposed method  EEG+fTCD Right MI/baseline 88.33% 10 NA 

Proposed method  EEG+fTCD Left MI/baseline 89.48% 10 NA 

Proposed method  EEG+fTCD Right /left MI 82.38% 10 NA 

*NA: Not applicable 
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To improve the accuracy for right arm MI versus left arm MI since it is significantly lower than the accuracies obtained for 

right/left MI versus baseline problems, our future directions include using common spatial pattern (CSP) for EEG analysis instead 

of power spectrum since CSP was proved to be successful with motor imagery BCIs [36], [39], [40]. Moreover, given that the most 

efficient fTCD-based BCI in literature employed wavelet analysis, we plan to use wavelet decomposition for analyzing fTCD data 

due to MI and baseline tasks.  Both the number of decomposition levels and the mother wavelet to be used will be optimized to 

achieve the best possible accuracy. 

Recently, the ultrasound was considered as a potential brain stimulation modality. It was found that focused ultrasound energy 

transmitted through human brain can change EEG oscillatory dynamics. In particular, it was proved that the ultrasonic energy 

targeted to somatosensory cortex affect the phase of beta frequency band found in brain electrical activity [41]. However, in the 

current study, we are interested in proving the significance of the hybrid system compared to EEG only in terms of accuracy and 

information transfer rate even if such improvement occurred due to ultrasound stimulation. 

V. CONCLUSION 

In this paper, we propose a novel motor imagery hybrid BCI that uses EEG as the primary sensing modality that measures brain 

electrical activity and the fTCD as the secondary sensing modality that measures cerebral blood flow velocity. To test the feasibility 

of binary BCIs, 3 binary selection problems were studied including right arm MI versus baseline, left arm MI versus baseline, and 

right arm MI versus left arm MI. It was shown that right/left arm MI versus baseline achieved higher accuracies compared to right 

arm MI versus left arm MI. Specifically, right arm MI versus baseline obtained 88.33% average accuracy and left arm MI versus 

baseline achieved 89.48% average accuracy while right arm MI vs left arm MI got average accuracy of 82.38%.  However, right 

arm MI versus left arm MI obtained the highest bit rate of 10.57 bits/min compared to 4.17 bits/min, and 5.45 bits/min obtained 

by right arm MI versus baseline and left arm MI versus baseline.  Based on these results, we believe that the proposed hybrid BCI 

is a promising tool for developing real-time BCI applications.  

TABLE A1 

Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each subject using hybrid system, EEG only, and fTCD only.  
These measures were obtained for right arm MI vs baseline problem using subject-independent threshold.   

Sub_ID Time(s) Se_Hybrid  Sp_Hybrid  Acc_Hybrid  Se _EEG  Sp _EEG  Acc_EEG  Se_fTCD  Sp_fTCD  Acc_fTCD  

1 10 98.08% 88.64% 93.75% 96.15% 86.36% 91.67% 55.77% 59.09% 57.29% 

2 10 82.69% 84.09% 83.33% 82.69% 84.09% 83.33% 67.31% 43.18% 56.26% 

3 2 84.62% 84.09% 84.38% 80.77% 77.27% 79.17% 55.77% 34.09% 45.83% 

4 9 92.31% 81.82% 87.50% 90.38% 70.45% 81.25% 63.46% 45.45% 55.21% 

5 9 92.31% 88.64% 90.63% 90.38% 84.09% 87.50% 63.46% 59.09% 61.46% 

6 4 82.69% 81.82% 82.29% 78.85% 65.91% 72.92% 61.54% 50.00% 56.25% 

7 6 90.38% 75.00% 83.33% 80.77% 77.27% 79.17% 55.77% 56.82% 56.25% 

8 7 92.31% 86.36% 89.58% 84.62% 75.00% 80.21% 69.23% 63.64% 66.67% 

9 5 65.38% 79.55% 71.88% 78.85% 68.18% 73.96% 53.85% 70.45% 61.46% 

10 10 92.31% 88.64% 90.63% 88.46% 84.09% 86.46% 65.38% 75.00% 69.79% 

Mean 7.2 87.31% 83.86% 85.73% 85.19% 77.27% 81.56% 61.15% 55.68% 58.65% 

 
TABLE A2 

Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each subject using hybrid system, EEG only, and fTCD only.  

These measures were obtained for right arm MI vs baseline problem using subject-specific thresholds.   

Sub_ID Time(s) Se_Hybrid  Sp_Hybrid  Acc_Hybrid  Se _EEG  Sp _EEG  Acc_EEG Se_fTCD  Sp_fTCD  Acc_fTCD   

1 10 98.08% 90.91% 94.79% 92.31% 90.91% 91.67% 55.77% 63.64% 59.38%  

2 7 96.15% 88.64% 92.71% 94.23% 88.64% 91.67% 88.46% 29.55% 61.46%  

3 7 84.62% 88.64% 86.46% 78.85% 84.09% 81.25% 48.08% 54.55% 51.04%  

4 9 92.31% 81.82% 87.50% 90.38% 70.45% 81.25% 63.46% 45.45% 55.21%  

5 9 92.31% 88.64% 90.63% 90.38% 84.09% 87.50% 63.46% 59.09% 61.46%  

6 7 88.64% 84.09% 86.46% 86.54% 84.09% 85.42% 67.31% 43.18% 56.25%  

7 6 92.31% 79.55% 86.46% 84.62% 75.00% 80.21% 46.15% 50.00% 47.92%  

8 7 96.15% 86.36% 91.67% 84.62% 77.27% 81.25% 73.08% 65.91% 69.79%  

9 5 76.92% 75.00% 76.04% 78.85% 63.64% 71.88% 48.08% 52.27% 50.00%  

10 10 92.31% 88.64% 90.63% 88.46% 84.09% 86.46% 65.38% 75.00% 69.79%  

Mean 7.7 90.96% 85.23% 88.33% 86.92% 80.23% 83.85% 61.92% 53.86% 58.23%  
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APPENDIX  

In Tables A1-A6, we introduce the detailed performance measures of each individual including maximum accuracy and the 

corresponding sensitivity, specificity, and time for the 3 classification problems solved using both subject-independent and subject-

specific thresholds.  
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TABLE A5 

Maximum accuracy (Acc) and the corresponding right arm and left arm sensitivities (SeR, and SeL), and time for each subject using hybrid system, EEG only, and 
fTCD only.  These measures were obtained for right arm MI vs left arm MI problem using subject-independent threshold.   

Sub_ID Time(s) SeR_Hybrid  SeL_Hybrid  Acc_Hybrid  SeR _EEG  SeL _EEG  Acc_EEG  SeR_fTCD  SeL_fTCD  Acc_fTCD  

1 1 88.46% 84.91% 86.67% 88.46% 84.91% 86.67% 40.38% 49.06% 44.76% 

2 5 73.08% 77.36% 75.24% 75.00% 75.47% 75.24% 50.00% 26.42% 38.10% 

3 10 78.85% 71.70% 75.24% 76.92% 69.81% 73.33% 59.62% 33.96% 46.67% 

4 1 86.54% 81.13% 83.81% 82.69% 83.02% 82.86% 59.62% 32.08% 45.71% 

5 1 78.85% 84.91% 81.90% 76.92% 79.25% 78.10% 34.62% 66.04% 50.48% 

6 3 82.69% 84.91% 83.81% 84.62% 86.79% 85.71% 46.15% 39.62% 42.86% 

7 4 71.15% 71.70% 71.43% 73.08% 77.36% 75.24% 46.15% 43.40% 44.76% 

8 7 94.23% 90.57% 92.38% 88.46% 90.57% 89.52% 51.92% 39.62% 45.71% 

9 1 71.15% 71.70% 71.43% 76.92% 64.15% 70.48% 44.23% 45.28% 44.76% 

10 1 65.38% 71.70% 68.57% 57.69% 73.58% 65.71% 73.08% 52.83% 62.86% 

Mean 3.4 79.04% 79.06% 79.05% 78.08% 78.49% 78.29% 50.58% 42.83% 46.67% 

 

TABLE A3 

Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each subject using hybrid system, EEG only, and fTCD only.  

These measures were obtained for left arm MI vs baseline problem using subject-independent threshold.   

Sub_ID Time(s) Se_Hybrid  Sp_Hybrid  Acc_Hybrid  Se _EEG  Sp _EEG  Acc_EEG Se_fTCD  Sp_fTCD  Acc_fTCD  

1 10 92.45% 95.45% 93.81% 86.79% 90.91% 88.66% 77.36% 70.45% 74.23% 

2 7 94.34% 90.91% 92.78% 96.23% 90.91% 93.81% 77.36% 36.36% 58.76% 

3 8 86.79% 93.18% 89.69% 81.13% 79.55% 80.41% 39.62% 54.55% 46.39% 

4 2 73.58% 75.00% 74.23% 75.47% 70.45% 73.32% 

 

58.49% 40.91% 50.52% 

5 8 83.02% 77.27% 80.41% 79.25% 75.00% 77.32% 30.19% 59.09% 43.30% 

6 2 92.45% 79.55% 86.60% 92.45% 77.27% 85.57% 64.15% 38.64% 52.58% 

7 3 90.57% 90.91% 90.72% 88.68% 88.64% 88.66% 58.49% 50.00% 54.64% 

8 9 90.57% 86.36% 88.66% 88.68% 84.09% 86.60% 49.06% 63.64% 55.67% 

9 5 83.02% 75.00% 79.38% 75.47% 72.73% 74.23% 56.60% 38.64% 48.45% 

10 9 88.68% 88.64% 88.66% 86.79% 88.64% 87.63% 52.83% 59.09% 55.67% 

Mean 6.3 87.55% 85.23 86.49% 85.09% 81.82% 83.61% 56.42% 51.14% 54.02% 

 

TABLE A4 
Maximum accuracy (Acc) and the corresponding sensitivity (Se), specificity (Sp), and time for each subject using hybrid system, EEG only, and fTCD only.  

These measures were obtained for left arm MI vs baseline problem using subject-specific thresholds.   

Sub_ID Time(s) Se_Hybrid  Sp_Hybrid  Acc_Hybrid  Se _EEG  Sp _EEG  Acc_EEG  Se_fTCD  Sp_fTCD  Acc_fTCD  

1 10 100.00% 95.45% 97.94% 88.68% 86.36% 87.63% 64.15% 68.18% 65.98% 

2 7 96.23% 90.91% 93.81% 92.45% 90.91% 91.75% 92.45% 34.09% 65.98% 

3 4 94.34% 93.18% 93.81% 86.79% 75.00% 81.44% 43.40% 61.36% 51.55% 

4 5 86.79% 75.00% 81.44% 84.91% 70.45% 78.35% 69.81% 52.27% 61.86% 

5 9 86.79% 88.64% 87.63% 84.91% 90.91% 87.63% 58.49% 47.73% 53.61% 

6 3 88.68% 84.09% 86.60% 75.47% 72.73% 74.23% 56.60% 50.00% 53.61% 

7 3 90.57% 90.91% 90.72% 88.68% 88.64% 88.66% 58.49% 50.00% 54.64% 

8 9 96.23% 88.64% 92.78% 92.45% 77.27% 85.57% 56.60% 43.18% 50.52% 

9 5 83.02% 75.00% 79.38% 75.47% 72.73% 74.23% 56.60% 38.64% 48.45% 

10 6 96.23% 84.09% 90.72% 94.34% 88.64% 91.75% 45.28% 50.00% 47.42% 

Mean 6.1 91.89% 86.59% 89.48% 86.42% 81.36% 84.12% 60.19% 49.55% 55.36% 
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Fig. 7. Difference between left fTCD channel (channel 2) and right fTCD 

channel (channel 1) during right arm and left arm MI   for   a) fTCD normalized 
envelope signals in time domain    b) power spectrum features in frequency 

domain. 
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