Journal of Neuroscience Methods 320 (2019) 98-106

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

Common spatial pattern and wavelet decomposition for motor imagery EEG- | M)

Check for

fTCD brain-computer interface

Aya Khalaf’, Ervin Sejdic, Murat Akcakaya

Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara St, Pittsburgh, PA, 15213, USA

ARTICLE INFO ABSTRACT

Background: Recently, hybrid brain-computer interfaces (BCIs) combining more than one modality have been
investigated with the aim of boosting the performance of the existing single-modal BCIs in terms of accuracy and
information transfer rate (ITR). Previously, we introduced a novel hybrid BCI in which EEG and fTCD modalities
are used simultaneously to measure electrical brain activity and cerebral blood velocity during motor imagery
(MI) tasks.

New method: In this paper, we used multi-scale analysis and common spatial pattern algorithm to extract EEG
and fTCD features. Moreover, we proposed probabilistic fusion of EEG and fTCD evidences instead of con-
catenating EEG and fTCD feature vectors corresponding to each trial. A Bayesian approach was proposed to fuse
EEG and fTCD evidences under 3 different assumptions.

Results: Experimental results showed that 93.85%, 93.71%, and 100% average accuracies and 19.89, 26.55, and
40.83 bits/min average ITRs were achieved for right MI vs baseline, left MI versus baseline, and right MI versus
left MI respectively.

Comparison with existing methods: These performance measures outperformed the results we obtained before in
our preliminary study in which average accuracies of 88.33%, 89.48%, and 82.38% and average ITRs of 4.17,
5.45, and 10.57 bits/min were achieved for right MI versus baseline, left MI versus baseline, and right MI versus
left MI respectively. Moreover, in terms of both accuracy and speed, the EEG- fTCD BCI with the proposed
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analysis techniques outperformed all EEG- fNIRS studies in comparison.
Conclusions: The proposed system is a more accurate and faster alternative to EEG-fNIRS systems.

1. Introduction

Brain-computer interfaces (BCIs) exploit brain activity to bypass
neuromuscular control with the aim of providing means of control and
communication with the surrounding environment for the BCI users
(Nicolas-Alonso and Gomez-Gil, 2012). Such systems are of great in-
terest especially for the individuals with neurological deficits causing
severe motor impairments (Lazarou et al., 2018). In such cases, BCIs are
used mainly for motor substitution and rehabilitation purposes (van
Dokkum et al., 2015). In addition, BCIs have other diverse applications
in which brain activity is translated into signals that be used for several
purposes such as gaming (Ahn et al., 2014), virtual reality (Coogan and
He, 2018), and controlling robots (LaFleur et al., 2013).

Several acquisition modalities have been employed to measure
brain activity using invasive and non-invasive techniques. However,
non-invasive modalities are more common in BCI design due to the low
risk associated with them compared to invasive modalities (Waldert,
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2016). Examples on non-invasive modalities include electro-
encephalography (EEG) (Lotte et al., 2007), functional magnetic re-
sonance imaging (fMRI) (Weiskopf et al., 2004), and functional near
infrared spectroscopy (fNIRS) (Coyle et al., 2004). Among non-invasive
modalities, EEG is the most common modality used for BCI design due
to its high temporal resolution, cost effectiveness, and portability
(Wolpaw et al., 2002). However, EEG suffers from low signal-to-noise
ratio and it encounters non-stationarities due to brain background ac-
tivities (Kaplan et al., 2005). Moreover, although the performance of
EEG-based BClIs is stable in laboratory environment, such performance
decreases significantly when the system is used in complex environ-
ments or for long periods (Brandl et al., 2015; Fatourechi et al., 2007).
BCI performance also decreases when it is controlled by severely motor-
impaired patients (Neumann and Kubler, 2003).

In order to overcome the limitations causing the performance de-
crease of EEG-based BClIs, EEG has been coupled with other control
signals that are either brain or non-brain signals (Hong and Khan,

Received 4 January 2019; Received in revised form 28 March 2019; Accepted 29 March 2019

Available online 01 April 2019
0165-0270/ © 2019 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/01650270
https://www.elsevier.com/locate/jneumeth
https://doi.org/10.1016/j.jneumeth.2019.03.018
https://doi.org/10.1016/j.jneumeth.2019.03.018
mailto:afk17@pitt.edu
https://doi.org/10.1016/j.jneumeth.2019.03.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2019.03.018&domain=pdf

A. Khalaf, et al.

2017). In particular, EEG has been successfully combined with mod-
alities measuring non-brain signals such as signals measured using
electromyogram (EMG) and Electrooculography (EOG). For instance, in
a hybrid EEG-EOG system, P300, motor imagery (MI), and eye blinking
signals have been employed to control wheelchair movement in four
different directions (Ramli et al., 2015). In another study, six different
commands generated using both EEG and eye gaze were used for
asynchronous wheelchair control (Wang et al., 2014). A hybrid EEG-
EMG BCI was designed through combining EMG and steady state vi-
sually evoked potential (SSVEP) signals. In particular, target stimuli
were divided into 4 different groups where EMG was used to infer the
group while EEG was used to select the target stimulus within that
group (Lin et al., 2016).

Moreover, EEG was coupled with modalities measuring different
brain activities such as fNIRS and fMRI. For instance, a bimodal neu-
rofeedback platform was designed based on simultaneous acquisition of
EEG and fMRI data (Mano et al., 2017). In such system, the dimensions
of the presented visual task changed based on the feedback from both
modalities. For instance, in one of the tasks, a sun was shown on the
screen where its brightness was controlled based on EEG feedback
while its radius was controlled based on fMRI feedback. In another
study, an EEG-fNIRS BCI was designed where EEG was used to detect
MI while fNIRS was used to identify MI type (Koo et al., 2015). In lit-
erature, EEG- fNIRS BCIs are more common compared to EEG-fMRI
BCIs since fMRI is non-portable, expensive, and needs a highly con-
trolled environment for efficient performance, therefore, EEG-fMRI
BCIs are not suitable for practical applications (Allison et al., 2007).
However, fNIRS is known to have low-temporal resolution which limit
its usage in real-life BCI applications (Zephaniah and Kim, 2014).
Moreover, the number of sensors to be used varies depending on the
application (Naseer and Hong, 2015).

Recently, functional transcranial Doppler ultrasound (fTCD) has
been used as a faster and cost-effective alternative to fNIRS in BCI de-
sign (Khalaf et al., 2018a; Min et al., 2010). Therefore, in our previous
studies, we suggested using EEG and fTCD for hybrid BCI design (Khalaf
et al., 2019, 2018b). In particular, to find the optimal visual presenta-
tion that can maximize the performance of the hybrid EEG-fTCD BCI,
two visual presentations were developed and tested. The first visual
presentation included MI tasks while the second one included flickering
mental rotation (MR) and word generation (WG) tasks. It was found
that the proposed MI system outperformed flickering MR/WG system in
terms of information transfer rate (ITR) while MR/WG system out-
performed MI in terms of accuracy (Khalaf et al., 2019, 2018b).

In this paper, we extend our previous work on MI multimodal hy-
brid BCI that utilizes EEG and fTCD modalities. In particular, we extend
our feature extraction approach by considering features computed
based on multiscale analysis and common spatial pattern (CSP) instead
of using power spectrum based features we employed previously
(Khalaf et al., 2019). It was shown that multiscale analysis captures the
changes in fTCD in a timely fashion making it a modality suitable for
real-time BCIs (Khalaf et al., 2018a). Moreover, CSP is commonly used
for EEG-based MI BCIs due to its computational simplicity and ability to
find the spatial patterns characteristic to different motor imagery tasks
(Ramoser et al., 2000). Using the classical feature extraction ap-
proaches described above, we mainly contribute to multi-modal fusion
of EEG and fTCD features. In particular, we propose a probabilistic
fusion of EEG and fTCD evidences instead of simple concatenation of
EEG and fTCD feature vectors. Through such a probabilistic fusion, the
contributions of each modality towards the correct decision can be
optimized. More specifically, EEG data was analyzed using common
spatial pattern while fTCD data was analyzed using wavelet decom-
position. Significant fTCD features were selected using Wilcoxon test.
To fuse EEG and fTCD features of each trial, we developed a Bayesian
framework and combined EEG and fTCD evidences under 3 different
assumptions. Intent inference was made based on maximum likelihood
estimation. The proposed analysis technique was used to evaluate 3
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binary selection problems including right MI vs baseline, left MI versus
baseline, and right MI versus left MI.

2. Materials and methods

This section includes detailed explanation of data acquisition
hardware, presented MI tasks, feature extraction and selection methods
as well as feature fusion and classification.

2.1. Experimental setup and data acquisition

A total of 10 healthy right-handed participants (6 females and 4
males) were recruited for this study. Before starting the experiment
procedures, all participants signed an informed consent. University of
Pittsburgh local Institutional Review Board (IRB) approved all proce-
dures employed in this study under IRB number of PRO16080475. Each
participant attended one data collection session of 25-min duration and
was seated 1-m away from the screen showing the visual presentation
presented to each BCI user.

16-electrode g.tec EEG system was used for EEG data collection.
Electrodes were placed at positions Fpl, Fp2, F3, F4, Fz, Fcl, Fc2, Cz,
P1, P2, C1, C2, Cp3, Cp4, P5, and P6. Reference electrode was placed
over left mastoid. EEG data was filtered using g USBamp, a bio-signal
amplifier, with 8th order bandpass filter of corner frequencies 2 and
62 Hz as well as 4th order notch filter with corner frequencies 58 and
62 Hz.

SONARA TCD system was used for fTCD data collection. In parti-
cular, to record fTCD data from left and right middle cerebral arteries
(MCAs), two 2 MHz transducers were positioned above the zygomatic
arch on the left and right sides of the transtemporal window
(Alexandrov et al., 2007). MCAs were selected for fTCD data acquisition
since they afford approximately 80% of the brain perfusion, therefore,
fTCD depth was set to the depth of the mid-point of MCAs (50 mm)
(Monsein et al., 1995). Since fTCD data are sampled at 44.1 kHz while
the fTCD signals are approximately bandlimited to 4.4 kHz, the data
were downsampled by a factor of 5 after a low-pass filter with 4.4 kHz
corner frequency was applied to avoid antialiasing.

2.2. Motor imagery visual presentation

During simultaneous EEG and fTCD data collection, each participant
observed visual presentation on which visual icons representing right
and left arm MI tasks as well as baseline are constantly shown on the
screen. As shown in Fig.1, left horizontal arrow represents left arm MI
and right horizontal arrow represents right arm MI while the fixation
cross in the middle represents baseline. The task to be performed by the
user is randomly selected using a vertical red arrow that keeps pointing
to the same task for 10s which is the trial length. During the visual
presentation, 150 trials are presented to the BCI user in a duration of
25 min.

2.3. Common spatial pattern (CSP)

In this study, common spatial pattern (CSP) was used to extract
features from EEG data. CSP is one of the most efficient feature

Fig. 1. Stimulus presentation for the hybrid BCI system.
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extraction techniques for MI-based EEG BCIs since characteristic EEG
spatial patterns obtained using CSP make MI different tasks sig-
nificantly differentiable (Devlaminck et al., 2011). Basic CSP algorithm
is used to analyze multi-channel data based on observations from two
classes. In particular, it designs a linear transform that maps the ob-
servations from two classes to a new space where they are more dis-
criminative in terms of variance (Wang et al., 2005). More specifically,
the aim of CSP is to learn the optimal spatial filters which maximize the
variance of one class while minimizing the variance of the other class
simultaneously (Blankertz et al., 2008). Finding such spatial filters can
be performed through solving the following optimization problem:

max w WTEZ. W

S. L. WT(Z(+) + E(_))W= 1 (€D)

where %, is the average trial covariance matrix for class c e{+,—} and
w!Z.w is the variance in direction w.

Assume each trial is represented by matrix R¥! where N is the
number of EEG channels and T is the number of samples. Sample
covariance matrix for each trial m is estimated as follows:

_ RRT
™ tr(RRT) )
Average trial covariance matrix can be calculated as follows:
M
1
Xe=— Sm
M mZ:: 1 3

Where M is the number of trials belonging to class c.

The optimization problem in (1) can be solved by simultaneous
diagonalization of the covariance matrices X.. This can be written as
follows:

WIZ W=Aw)
WIZOW = Acy

S b Awy+ Ao =1 4

Where A, is a diagonal matrix with the eigenvalues A} , j = 1,2, ...N on
diagonal.

Solving (4) is equivalent to solving the generalized eigenvalue
problem given by:

Zw; = A2y, 5)

piSe;
Where wj is the j™ generalized eigenvector and A = ﬁ.(4) is satisfied

J
for transformation matrix W = [wy, w,, ...wy] and /lf given by:

Y

T
=i Z W

©

Where A are the diagonal elements of A.. Given that Ay + Ay =1,
consequently, it can be concluded that /1](” + /IJ(’) =1

For instance, when value of /1}” is large, it reflects higher variance
in the positive class when filtering it using the spatial filter w;. In the
meantime, a high value of /1}") yields low value of /1;-". Therefore, the
same spatial filter w; will result in low variance when used for filtering
the negative class. For classification purposes, eigenvectors from both
ends of matrix W are considered to maximize the differentiation be-
tween the 2 classes. In previous studies (Blankertz et al., 2008; Grosse-
Wentrup et al., 2009; Lu et al., 2010), it was found that 3 eigenvectors
from both ends of W are sufficient to perform the classification task.
However, since such choice of the number of eigenvectors used for EEG
spatial filtering can vary depending on many parameters such as the
number and the location of the electrodes used in each study, in this
paper, we solved the 3 binary classification problems at all possible
numbers of eigenvectors. In particular, we spatially filtered EEG data
using 1, 2, 3, ...., and 8 eigenvectors from both ends of W. To extract
EEG features, we calculated the log variance of each spatially filtered
signal.
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2.4. Wavelet decomposition

fTCD data were analyzed using 5-level wavelet decomposition that
utilized Daubachies 4 mother wavelet. Such analysis was performed
since it was used before with fTCD data and it yielded the most efficient
fTCD-based BCI in literature (Khalaf et al., 2018a). To reduce the di-
mensionality of the fTCD feature vector, 4 features were computed for
each wavelet band instead of using all wavelet coefficients as features.
The 4 features included mean, variance, skewness, and kurtosis. Feature
vector corresponding to each trial included 24 features for each channel
and 48 features in total.

2.5. Feature reduction and classification

Wilcoxon signed rank test (Blair and Higgins, 1980) was used to
select the significant features from fTCD feature vectors. p-values of
0.001, 0.005, 0.01, and 0.05 were used. As for EEG, feature vector of
each trial contained 2f features obtained by projecting the trial data
using f=1, 2, 3, ..., and 8 eigenvectors from both ends of W. To assess
the performance of single-modal BCIs (EEG only and fTCD only BClIs),
selected features from each modality were classified solely using sup-
port vector machine (SVM) classifier (Chih-Wei Hsu and Chih-Jen Lin,
2002). In particular, performance of fTCD only system was evaluated at
p-values of 0.001, 0.005, 0.01, and 0.05. Also, performance of EEG only
system was evaluated using 2f (2, 4, 6, ...., and 16) CSP features. The
best set of performance measures for each modality were reported in
the results section (Section 3) below.

To evaluate the performance of the hybrid system, EEG feature
vector of each trial containing f features was projected into one scalar
SVM score (EEG evidence). Moreover, the selected features from the
fTCD feature vector were also projected into one scalar SVM score
(fTCD evidence). In particular, EEG and fTCD feature vectors corre-
sponding to training trials were used to learn 2 SVM classifiers sepa-
rately. The 2 classifiers were used to obtain 2 SVM scalar scores re-
presenting projected EEG and fTCD feature vectors of each trial under
test. EEG and fTCD SVM scores were evaluated at p-values of 0.001,
0.005, 0.01, and 0.05 and 2f (2, 4, 6, ...., and 16) CSP features. The
best set of performance measures were reported in the results section.

2.6. Bayesian fusion and decision making

To infer user intent of a given test trial, EEG and fTCD evidences of
the training trails were employed in a probabilistic manner. In parti-
cular, a Bayesian framework was developed to decide on a test trial
under 3 different assumptions. The first assumption (A1) assumes EEG
and fTCD evidences are jointly distributed while the second assumption
(A2) assumes evidences of EEG and fTCD are independent. The last
assumption (A3) assumes EEG and fTCD are independent but they do
not have equal contribution towards making a correct decision. To
define training and testing sets, the trials of each classification problem
were divided into training and testing trials using 10-fold cross vali-
dation.

Assume N is the number of trials presented to a certain BCI user.
Given a set of EEG and fTCD measurements Y = {y, ..)y} where
¥, = 1{en, f,}, e, and f, are EEG and fTCD evidences respectively. For a
test trial k, the unknown user intent x; can be inferred through state
estimation using evidences of EEG and fTCD jointly. This is presented in
the following optimization problem.
Xy = arg n)lchp(xkl Y=y) e
where p(x;| Y) is the state posterior distribution conditioned on the
observations Y. Using Bayes rule, (7) can be written as:
X = arg n)lchp(Y = Y Xic) p (%)

®

where p(Y! x;) is the state conditional distribution of the measurements
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Y and p(xy) is the prior distribution of x;. This distribution is assumed
to be uniform since the trials are randomized. Consequently, (8) can be
written as:
X = arg maxp(Y =y, | x¢)
Xk k (C)]
Using EEG and fTCD evidences of the training trials, p(Y| x;) can be
computed. To infer user intent at trial k, Eq. (9) can be solved atY = y,.
In this study, the distribution p(Yl x;) is evaluated under 3 different
assumptions as explained in detail below.

2.6.1. Assumption 1: joint distribution
Given that y, = {ex, f,}, (9) can be rewritten as:

X, = argmaxp(e = ¢, f=f.| x

o g 1 p( o f = Sl xi) 10
where p(e, fl xi) is the state conditional joint distribution of EEG and
fTCD evidences. Using the EEG and fTCD evidences of N-10 training
trials, Kernel density estimation (KDE) with gaussian kernel was per-
formed to find joint distributions p(e, fI xx), x¢ = 1,2. To infer user
intent at trial k with measurement y, = {e\, f}, ex and f, are plugged in
(10) and the user intent x; that yields the maximum likelihood is se-
lected.

2.6.2. Assumption 2: independent distributions

Assuming that the EEG and fTCD evidences, conditioned on the
latent state x;, are independent, accordingly (10) can be written as:
X = arg;maxp(e = el x)p(f = f,| x)

X an

where p(el x;) and p(fl x) are the distributions of EEG and fTCD evi-
dences conditioned on the state x; respectively. To estimate the dis-
tributions p(el xx) and (fl xi), KDE with gaussian kernel was performed
using EEG and fTCD scores of the N-10 training trials. For a trial under
test of y, = {ex, f}, ex and f, are plugged in (11) and the user intent x;
that yields the maximum likelihood is selected.

2.6.3. Assumption 3: weighted independent distributions

Here, we propose weighting the conditional distributions p(el x)
and p(fl x,) with weights that sum up to 1 given the fact that the
contribution of EEG and fTCD evidences towards making a correct
decision might be unequal. Thus (10) can be written as:
X = arg,nﬁxp(e = el x)°p(f = fi | ;)= a2
where « is a weighting factor that ranges from 0 to 1 with a step of 0.01.
p(el x) and p(fl x;) can be computed as mentioned in Section 2.6.2.
Such distribution weighting is equivalent to convex combination of the
log likelihoods.

For assumption A3, unlike A1 and A2, the training of our hybrid
system requires optimizing o value. Such optimization is achieved
through grid search over a values ranging from 0 to 1 with a step of
0.01.

2.7. EEG-fTCD analysis across time

To evaluate the performance of the hybrid system compared to the
single-modal systems (EEG only and fTCD only systems), accuracy and
information transfer rate (ITR) (Obermaier et al., 2001) were calculated
across 10-s period (trial length) for the 3 systems. ITR can be calculated

as follows:
1-— P)
N-1

where P is the classification accuracy, N is the number of BCI classes,
and B is the information transfer rate per trial.

Both EEG and fTCD data were analyzed across time at time points 1,
2....,,10 s. Incremental window with initial length of 1s and increments

B = log,(N) + Plog,(P) + (1 — P)logz( 13)
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of 1s was used to analyze EEG data while a moving window of 1s
length was used to analyze fTCD data. Moving window was chosen for
fTCD analysis based on an fTCD-based BCI study in which performance
of both incremental and moving windows was compared (Khalaf et al.,
2018a). In particular, CSP EEG features and fTCD features at each time
window were computed and the performance measures of EEG only and
fTCD only systems were calculated at each time point. To compute the
performance measures of the hybrid system, EEG and fTCD evidences
were combined using the Bayesian framework described in Section 2.6
for joint user intent inference. In particular, at each time point (1,
2....,10 s), for every trial, EEG and fTCD evidences corresponding to the
EEG and fTCD feature vectors at that time point were calculated. Then,
these evidences were combined under the 3 different assumptions de-
scribed in Section 2.6 and the corresponding performance measures
were calculated.

3. Results

To assess the significance of combining EEG and fTCD for hybrid
BCI design, for each participant, maximum possible accuracies obtained
using EEG only and fTCD only were compared with maximum accuracy
achieved using the hybrid system under the 3 different assumptions
(A1, A2, and A3). These accuracies are reported for each individual
separately in Tables 1-3 for right MI vs baseline, left MI versus baseline,
and right MI vs left MI problems respectively. Moreover, to evaluate the
balance of the prediction model, error bars of sensitivities and specifi-
cities corresponding to the accuracies reported in Tables 1-3 were
plotted in Fig. 2. In addition, to statistically evaluate the significance of
the hybrid combination compared to EEG only, p-values, reported in
Table 4 representing the statistical difference between the accuracy
vector of Al, A2, and A3 and accuracy vector of EEG only were cal-
culated using Wilcoxon signed rank test. However, statistical compar-
ison in terms of maximum accuracy only is not sufficient to judge the
effectiveness of the BCI since accuracy does not reflect the speed of the
BCI in contrast to ITR which is a measure that combines both speed and
accuracy. Therefore, we compared the hybrid system under A1, A2, and
A3 with EEG only and fTCD only in terms of ITRs that are computed at
1 s trial length. We chose 1 s as the trial length because such a selection
will enable us to use this system in online applications. Moreover,
average ITRs of Al, A2, A3, EEG only, and fTCD only were plotted
across the 10-s trial length and presented in Fig. 3.

For right MI versus baseline, Table 1 shows that EEG only achieved
average accuracy of 90.52% and fTCD only achieved average accuracy
of 64.48% while the hybrid system obtained 91.35%, 92.29%, and
93.85% under Al, A2, and A3 assumptions respectively. Statistical
comparisons showed that accuracy vectors of A2 and A3 are significant
compared to accuracy vector obtained using EEG only with p-values of
0.002 and 0.0009 while in terms of ITRs, A2 and A3 were found to be
significant with p-values 0.0098 and 0.001. For both accuracy and ITR,
Al was found to be insignificant as seen in Tables 4 and 5. As for left MI

Table 1
Maximum accuracy achieved for each subject using hybrid combinations (A1,
A2, A3), EEG only, and fTCD only for right MI vs baseline problem.

Sub_ID EEG fTCD Al A2 A3

1 92.71% 64.58% 93.75% 93.75% 94.79%
2 90.63% 60.42% 89.58% 90.63% 92.71%
3 81.25% 63.54% 82.29% 82.29% 84.38%
4 87.50% 68.75% 89.58% 93.75% 95.83%
5 96.88% 61.46% 95.83% 97.92% 97.92%
6 86.46% 68.75% 88.54% 89.58% 92.71%
7 93.75% 59.38% 94.79% 94.79% 96.88%
8 95.83% 60.42% 95.83% 96.88% 96.88%
9 87.50% 65.63% 89.58% 89.58% 91.67%
10 92.71% 71.88% 93.75% 93.75% 94.79%
Mean 90.52% 64.48% 91.35% 92.29% 93.85%
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Table 2
Maximum accuracy achieved for each subject using hybrid combinations (A1,
A2, A3), EEG only, and fTCD only for left MI vs baseline problem.

Journal of Neuroscience Methods 320 (2019) 98-106

Table 4
P-values showing accuracy significance of Al, A2, and A3 compared to EEG
only for the 3 binary problems.

Sub_ID EEG fTCD Al A2 A3 Comparison Right MI vs Baseline Left MI vs Baseline Right MI vs Left MI

1 92.78% 58.76% 92.78% 91.75% 93.81% A1/EEG 0.1055 0.9922 0.0020

2 93.81% 68.04% 92.78% 92.78% 93.81% A2/EEG 0.0020 0.5332 0.0020

3 91.75% 62.89% 92.78% 94.85% 96.91% A3/EEG 0.0009 0.0625 0.0020

4 87.63% 59.79% 86.60% 83.51% 89.69%

5 92.78% 61.86% 91.75% 89.69% 92.78%

;3 gg‘g?:ﬁ’ gi‘gzz’ g;gisﬁ’ zi‘géz’ ng:ﬁf specificities were achieved using the hybrid system under the 3 as-

. 0 g 0 . 0 g 0 . 0 .

s 05.88% 50.79% 89.69% 90.72% 90.72% 'sum.ptlons Al, A2, and A3 as well as EEG only and fTCD only as shown

9 91.75% 61.86% 91.75% 93.81% 94.85% in Fig. 2c.

10 93.81% 61.86% 91.75% 93.81% 94.85% The results above show that, on average, the accuracy differences

Mean 92.16% 61.24% 90.72% 91.96% 93.71% between the hybrid system and EEG only are relatively low, however, in

terms of ITRs, as seen in Fig. 3, average ITRs of Al, A2, and A3 are

Table 3 clearly higher than those achieved using EEG only and fTCD only for

able

Maximum accuracy achieved for each subject using hybrid combinations (A1,
A2, A3), EEG only, and fTCD only for right MI vs left MI problem.

Sub_ID EEG fTCD Al A2 A3

1 93.33% 63.81% 100.00% 100.00% 100.00%
2 88.57% 58.10% 100.00% 100.00% 100.00%
3 92.38% 70.48% 100.00% 100.00% 100.00%
4 91.43% 62.86% 100.00% 100.00% 100.00%
5 93.33% 59.05% 100.00% 100.00% 100.00%
6 90.48% 61.90% 100.00% 100.00% 100.00%
7 96.19% 60.95% 100.00% 100.00% 100.00%
8 100.00% 62.86% 100.00% 100.00% 100.00%
9 95.24% 57.14% 100.00% 100.00% 100.00%
10 80.95% 62.86% 100.00% 100.00% 100.00%
Mean 92.19% 62.00% 100.00% 100.00% 100.00%

versus baseline, A1, A2, and A3 obtained average accuracies of 90.72%,
91.96%, and 93.71% respectively while EEG only and fTCD only ob-
tained 92.16% and 61.24% respectively. A1, A2, and A3 were statically
compared with accuracy vector due to EEG only. As seen in Table 4, in
terms of accuracy, A3 was shown to be statistically insignificant com-
pared to EEG only with a p-value of 0.0625 while A1 and A2 were
insignificant compared to EEG only with p-values greater than 0.5. In
contrast, in terms of ITR, A3 was found to be significant compared to
EEG only with a p-value of 0.001 as shown in Table 5. fTCD average
sensitivities and specificities of right MI versus baseline and left MI
versus baseline problems were found to be imbalanced as shown in
Fig. 2a and b.

As seen in Table 3, the 3 hybrid combinations (A1, A2, and A3)
achieved 100% accuracy for right MI versus left MI problem compared
to 92.19% and 62.00% obtained using EEG only and fTCD only re-
spectively. In line with these results, p-values of Tables 4 and 5 showed
that A1, A2, and A3 are statistically significant compared to EEG only in
terms of both accuracy and ITR. Moreover, balanced sensitivities and

the 3 binary selection problems although, according to Table 5, A3 is
the only assumption that shows statistical significance for the 3 selec-
tion problems when compared to EEG only. In particular, for right MI
versus left MI, A1, A2, and A3 achieved maximum ITRs of 39.09, 39.46,
and 40.83 bits/min respectively compared to 12.08 and 12.11 bits/min
achieved by EEG only and fTCD only. As for right MI versus baseline,
Al, A2, A3, EEG only, and fTCD only achieved maximum ITRs of 22.71,
19.89 22.27, 12.08, and 12.11 bits/min respectively. Finally, left MI
versus baseline problem yielded maximum ITRs of 10.68 and 17.43
bits/min using EEG only and fTCD only while Al, A2, and A3 obtained
23.87, 24.29, and 26.55 bits/min. In summary, A3 is the only fusion
assumption that provided significantly higher performance compared
to EEG only system for all the binary selection problems.

4. Discussion

In general, it can be noted that the proposed analysis approach in-
cluding feature extraction and probabilistic fusion stages did not sig-
nificantly boost the performance of the hybrid system compared to EEG
only in terms of accuracy. However, the proposed analysis resulted in
average ITR that is 5 times the average ITR obtained previously for
right/left MI versus baseline (Khalaf et al., 2019). Moreover, the
average ITR of the right MI versus left MI problem is 4 times the ITR
achieved before for the same problem (Khalaf et al., 2019).

Considering the performance of the hybrid system for the 3 binary
selection problems, it was found that right MI versus left MI problem
obtained significantly higher average accuracy and average ITR com-
pared to left/right MI versus baseline problems under assumptions Al,
A2, and A3. Specifically, 100% accuracy was obtained under the 3
different assumptions compared to 93.85% and 93.71% achieved by
right MI versus baseline and left MI versus baseline respectively while
average ITRs of 40.83, 19.89, and 26.55 bits/min were obtained for
right MI versus left MI, right MI versus baseline, and left MI versus
baseline respectively. Such results indicate that the information
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Fig. 2. Sensitivities and specificities (mean and standard deviation) calculated using A1, A2, A3, EEG only, and fTCD only for right MI vs baseline problem (a), left MI

vs baseline problem (b), and right MI vs left MI (c).
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Fig. 3. Average ITRs calculated using EEG only, fTCD only, and the 3 hybrid combinations (A1, A2, and A3) for right MI vs baseline problem (a), left MI vs baseline

problem (b), and right MI vs left MI problem (c).

Table 5
P-values showing ITR significance of Al, A2, and A3 compared to EEG only for
the 3 binary problems.

Comparison  Right MI vs Baseline  Left MI vs Baseline Right MI vs Left MI
A1/EEG 0.0938 0.2461 0.0059
A2/EEG 0.0098 0.1250 0.0029
A3/EEG 0.0010 0.0010 0.0010

provided by EEG and fTCD modalities during task versus task problem
are well suited to complement each other.

In terms of both accuracy and ITR, as seen in Tables 1-5, the hybrid
system under assumptions A2 and A3 outperformed EEG only for right
MI versus baseline and right MI versus left MI problems. For left MI
versus baseline problem, although hybrid system under Al, A2, and A3
did not provide significant improvement compared to EEG only in
terms of accuracy, the hybrid system under A3 provided a significant
improvement in terms of ITRs as shown in Table 5. Considering the 3
binary selection problems, it can be concluded that A3 provides sig-
nificantly higher accuracies and/or ITRs compared to EEG only as seen
in Tables 1-3, Fig. 3, and confirmed by the statistical comparisons
shown in Tables 4 and 5. Therefore, we believe that the system can
perform efficiently under the weighted independence assumption (A3).

Although the accuracy due to EEG only for left MI versus baseline
problem was higher than the EEG accuracy of right MI versus baseline
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problem, assumptions A2 and A3 failed to significantly improve the
accuracy of the hybrid system compared to EEG only for left MI versus
baseline while same assumptions succeeded to significantly improve the
hybrid performance for right MI versus baseline compared to EEG only.
Therefore, we claim that such failure occurred because fTCD could not
boost the performance of the system due to limitations related to the
features extracted from fTCD data and how well these features are able
to highlight the differences between left MI and baseline. To prove such
a claim, at different decomposition levels, we investigated wavelet
coefficients from which the fTCD statistical features were derived. As
seen in Fig. 4, for each fTCD channel, the difference between right MI
coefficients and baseline coefficients (Fig. 4a and c) is higher than the
difference between left MI coefficients and baseline coefficients (Fig. 4b
and d). Moreover, the differences between the wavelet coefficients due
to MI tasks and baseline seem to be localized rather than global while
the statistical features we extract in this paper are calculated for all
coefficients within each wavelet band. For instance, out of around 2700
approximation coefficients, only 500 coefficients highlight the differ-
ences between left MI and baseline coefficients as shown in Fig. 4b
while many more coefficients highlight the differences between right
MI and baseline as seen in Fig. 4a. Considering level 4 detail coeffi-
cients, for left MI versus baseline, the differences between the coeffi-
cients were more noticeable for the last 3000 coefficients out of 11,000
in total for both channels while for right MI versus baseline, the dif-
ferences were obvious over all the coefficients representing channel 2
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Fig. 4. For each task, wavelet coefficients of each wavelet band were averaged across trials corresponding to that task. The figure shows average approximation and
level 4 detail wavelet coefficients for right MI vs baseline problem (a, ¢) and left MI vs baseline problem (b, d). It can be noted that, for each fTCD channel, the
difference between right MI coefficients and baseline coefficients (Fig. 4a and c) is higher than the difference between left MI coefficients and baseline coefficients

(Fig. 4b and d).

and over the last 3000 coefficients representing channel 1.

In general, since the difference between right MI and baseline
coefficients is more obvious than the difference between left MI and
baseline coefficients, the global features were able to better highlight
the differences between right MI and baseline and, therefore, improve
the hybrid performance compared to EEG only for right MI versus
baseline. Considering Fig. 4a and Fig. 4b, for both channels, it can be
noted that the difference between right MI and left MI coefficients is
more noticeable than the right MI-baseline difference and left MI-
baseline difference. Such observation explains the reason why fTCD
provided more significant information for right MI versus left MI pro-
blem.

In this paper, extraction of fTCD global statistical features was
performed with the aim of reducing the computational complexity of
the system through extracting few numbers of features rather than
utilizing the wavelet coefficients themselves as features which will re-
sult in a very high-dimentional feature vector. To address local changes
in the wavelet coefficients, as one of our future directions, we will
calculate localized statistical features for each wavelet band though
dividing each band into segments with equal length where the segment
length can be determined based on the calibration sessions of each
participant.

In our preliminary study in which we introduced MI hybrid EEG-
fTCD BCI, average accuracies of 88.33%, 89.48%, and 82.38% and
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average ITRs of 4.17, 5.45, and 10.57 bits/min were achieved for right
MI versus baseline, left MI versus baseline, and right MI versus left MI
respectively (Khalaf et al., 2019). In the current study, we succeeded to
significantly improve both accuracy and ITR of the proposed MI-based
hybrid system. In particular, the current analysis yielded 93.85%,
93.71%, and 100% average accuracy and 19.89, 26.55, and 40.83 bits/
min average ITRs for right MI versus baseline, left MI versus baseline,
and right MI versus left MI respectively.

Moreover, to evaluate the performance of the 2 visual presentations
we designed for the hybrid EEG-fTCD system, we compared the current
performance measures obtained using MI visual presentation with the
preliminary performance measures we obtained using MR/WG visual
presentation (Khalaf et al., 2018b) As seen in Table 6, MI visual pre-
sentation using the current analysis approach outperformed MR/WG
visual presentation in terms of accuracy. In terms of ITR, average ITRs
obtained using MR/WG visual presentation were 4.39, 3.92, and 5.60
bits/min for MR versus baseline, WG versus baseline, and WG versus
MR classification respectively (Khalaf et al., 2018b). Such ITRs are
significantly lower than the ITRs we obtained in the current study using
MI visual presentation especially for task versus baseline problems.

Since the hybrid EEG-fTCD system is suggested as a faster alter-
native for EEG-fNIRS BCIs, we compared our results with the binary
EEG-fNIRS BClIs in literature in terms of accuracy and trial length. As
seen in Table 6, the MI EEG-fTCD system with the proposed analysis
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Table 6
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Comparison between the proposed hybrid system and the state-of-the-art hybrid BCIs.

Method Activity Modalities Accuracy Trial length (s)
Task Baseline/rest

(Fazli et al., 2012) Motor Imagery EEG + fNIRS 83.20% 5 6/0
(Fazli et al., 2012) Motor Execution EEG + fNIRS 93.20% 6/0
(Blokland et al., 2014) Motor Imagery EEG +{NIRS 79.00% 15 0/30 £ 3
(Blokland et al., 2014) Motor Execution EEG + fNIRS 87.00% 15 0/30 £ 3
(Khan et al., 2014) Mental Arithmetic EEG + fNIRS 83.60% 10 0/5
(Khan et al., 2014) Motor Execution EEG + fNIRS 94.70% 10 0/5
(Putze et al., 2014) Visual/auditory stimuli EEG + fNIRS 94.70% 125+ 25 0/20 =5
(Yin et al., 2015) Motor Imagery EEG + fNIRS 89.00% 10 0/21 =1
(Koo et al., 2015) Motor Imagery fTCD + NIRS 88.00% 15 0/60
(Buccino et al., 2016) Motor Execution EEG + fNIRS 72.20% 6 6/0
(Buccino et al., 2016) Motor Execution EEG + fNIRS 94.20% 6 6/0
(Shin et al., 2017) Mental Arithmetic EEG + fNIRS 88.20% 10 0/16 =1
(Khalaf et al., 2018b) (MR/baseline) SSVEP+ MR/WG EEG + fTCD 89.11% 10 NA
(Khalaf et al., 2018b) (WG/baseline) SSVEP+ MR/WG EEG + fTCD 80.88% 10 NA
(Khalaf et al., 2018b))(MR/WG) SSVEP+ MR/WG EEG +{fTCD 92.38% 10 NA
(Khalaf et al., 2019) (right/baseline) Motor Imagery EEG +fTCD 88.33% 10 NA
(Khalaf et al., 2019) (left/baseline) Motor Imagery EEG+fTCD 89.48% 10 NA
(Khalaf et al., 2019) (right/left) Motor Imagery EEG +fTCD 82.38% 10 NA
Proposed method (right/baseline) Motor Imagery EEG +fTCD 93.85% 10 NA
Proposed method (left/baseline) Motor Imagery EEG +fTCD 93.71% 10 NA
Proposed method (right/left) Motor Imagery EEG +{TCD 100.00% 10 NA

*NA: Not applicable.
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