
Motor rehabilitation for hemiparetic stroke patients 
using a brain-computer interface method 

 

Abstract—Brain-computer interfaces (BCIs) have been 
employed in rehabilitation training for post-stroke patients. In 
this study, we present the results of the intervention based on 
BCI triggered functional electrical stimulation (FES) and avatar 
mirroring. Seven chronic stroke patients participated in 25 
sessions of training over 13 weeks. Seven assessments were 
conducted to observe any behavioral changes before and after 
the intervention. The primary outcome measure, i.e. the Fugl-
Meyer Assessment of the Upper Extremity (FMA-UE), increased 
significantly by 6.4 points (p=0.048), which is above the minimal 
clinically important difference (MCID). The Modified Ashworth 
Scale (MAS), one of the secondary outcome measures, reduced 
significantly in both the wrist and the finger (p=0.046 and 
p=0.047 respectively). This study demonstrated motor function 
improvement and spasticity reduction in chronic stroke patients 
(n=7) after BCI triggered FES and avatar mirroring. One 
limitation of this study is that the small sample size may not 
adequately represent the diverse stroke population. Further 
work should include a randomized controlled trial to investigate 
the effectiveness of BCI triggered FES compared to conventional 
therapies. 

 

Keywords—brain-computer interfaces, motor imagery, stroke 
rehabilitation, functional electrical stimulation, avatar 

 

I. INTRODUCTION 
 Stroke is one of the main causes of mortality and long-

term disability worldwide. Stroke survivors often suffer from 
movement restrictions of their affected limb, leading to 
reduced use and compensation. Therapies such as constraint 
induced movement therapy restrict the use of the healthy limb, 
encouraging patients to use the paretic limbs more often. This 
method has seen some therapeutic success [1], [2], however 
this success has been limited to patients with residual 
movement in their paretic side. For patients with severe 
paresis, several passive movement therapy approaches are 
available. One such technique is continuous passive motion 
therapy, which has  
 

 
shown modest functional improvements in patients. Critically, 
these passive approaches do not monitor the patients’ active 
engagement in the therapy, which has been shown to be 
crucial to motor learning and rehabilitation. Current stroke 
recovery techniques, while somewhat effective, leave much to 
be desired. 
 

Motor imagery based brain-computer interfaces (BCI) 
have recently been employed in rehabilitation training for 
stroke patients to fill the gap between patient expectations and 
therapy outcomes [3]–[5]. These BCIs record, analyze, and 
utilize electroencephalographic (EEG activity) in real-time. 
Patients imagine or perform specific movements such as wrist 
dorsiflexion of their own limbs, and the corresponding brain 
activity is acquired by EEG electrodes and sent to an 
amplifier. If the correct movement is interpreted by the BCIs 
classification algorithm, sensory feedback is provided via 
external devices. This sensory feedback stimulates the CNS to 
induce neuroplasticity for motor rehabilitation [6], [7]. 

 
This techniques effectiveness has been shown in multiple 

studies implementing exoskeletal devices, robots, and 
functional electrical stimulation (FES), which induces 
movement of the affected limbs independent of direct patient 
motor control [2-5]. In addition, virtual reality enhances the 
cortical reorganization and reduces the interhemispheric 
imbalance in motor rehabilitation providing real-time visual 
feedback [11], [12]. During repetitive BCI training sessions, 
even patients with severe impairments can complete the 
sensorimotor loop in his/her brain linking coherent sensory 
feedback with motor intention.  

 
A ready-to-use BCI system, called recoveriX® (g.tec 

medical engineering GmbH, Austria) was recently introduced 
to bring the current BCI technology to the stroke affected 
community. recoveriX provides visual feedback with 
animated upper extremities in virtual reality (avatar) and 
proprioceptive feedback producing movement via FES. A 
depiction of the recoveriX setup can be seen in Figure 1. In 
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this study we evaluate the behavioral outcomes of BCI 
training in chronic stroke patients. 

II. PATIENTS AND METHODS 

A. Patients 

All participants fulfilled the following inclusion criteria: 
(1) ability to understand written and spoken instructions; (2) 
hemiparesis; (3) time since stroke of at least four days; (4) 
stable neurological status other than stroke; (5) ability to 
participate in the study for three months; (6) no pregnancy; (7) 
no implanted medical devices such as pacemakers; (8) no 
implanted metallic fragments in the upper extremities; (9) no 
cerebellar lesion; (10) no severe hemi-neglect; (11) no 
epilepsy; (12) no fractures or lesions in the upper extremities; 
(13) no severe lung diseases or liver disease; (14) no severe 
pusher syndrome; (15) ability to maintain a seated position for 
one hour; (16) no sensory disorder feeling pain or unsuitably 
reacting to sensory stimuli; (17) no peripheral nervous 
diseases affecting the upper limbs (brachial plexus pals and 
cervical radicular syndromes). 

 

B. Study Design 
Each patient received 25 sessions of BCI feedback training 

over three months. Two pre-intervention measurements (Pre1 
and Pre2) and one post-intervention measurement (Post) were 
carried out to investigate the rehabilitation effects. Pre1 and 
Pre2 were scheduled one month and two days before the 
intervention, respectively, while Post was performed two days 
after the intervention was completed. The study protocol was 
approved by the Ethics Committee of the Province of Upper 
Austria (#D-42-17). All patients gave a signed informed 
consent before participating in the training.  

C. BCI Training 

One training run consisted of 80 trials and one session 
contained three runs. The total time of one session was about 
60 minutes including preparation and cleaning time. Patients 
wore EEG caps with 16 active electrodes (g.SCARABEO, 
g.tec medical engineering GmbH, Austria). The electrode 
positions were according to the international 10/10 system 
(extended 10/20 system) at FC5, FC1, FCz, FC2, FC6, C5, 
C3, C1, Cz, C2, C4, C6, Cp5, Cp1, Cp2, and Cp6. A reference 
electrode was placed on the right earlobe and a ground 
electrode at FPz.  

Two FES pads were placed on the skin over wrist 
extensors of the left and right forearms. The FES parameters 
(g.Estim, g.tec medical engineering GmbH, Austria) were set 
to a frequency of 50 Hz and a rectangular pulse width of 300 

s. The stimulation amplitude (in mA) was adjusted to find 
the optimal movement produced by electrical stimulation in 
both the healthy and affected limbs. 

The sequence of motor tasks was specified by the 
recoveriX software in pseudo random order with randomized 
inter-trial intervals. Patients were first cued to the start of a 
trial with an attention beep. Two seconds later, an animated 
arrow in the avatar window pointed to the expected hand for 
motor imagery (MI). At the same time, an auditory instruction  

 
saying either “left” or “right” indicated the task of each trial. 
During the feedback phase, FES and avatar feedback were 
activated when recoveriX detected MI of the correct hand. If 
no MI is detected, feedback is deactivated. Feedback was 
updated five times per second. A depiction of the time 
sequence of a single trial can be seen in Figure 2.  

 

D. Signal Processing 
EEG signals were sent to a biosignal amplifier and were 

bandpass filtered (Butterworth filter 4th order) between 8 and 
30 Hz. Then common spatial patterns (CSP) were applied to 
transform the data to a new matrix with minimal variance of 
one class and maximal variance of the other class [13]. Each 
class reflects the MI of the cued hand versus the MI of the 
other side. The CSP method calculated a 16 × 16 projection 
matrix from 16 EEG channels for each left and right trial X. 
This matrix is a set of special patterns and implies the 
activated area of cortex during hand MI. The decomposition of 
a trial is written as Z = WX. This transformation projects the 
variance of X onto the rows of Z and results in 16 new time 
series. The columns of A = W-1 are a set of CSPs and can be 
considered as time-invariant EEG distributions. The variance 

 
Figure 1. General concept of the BCI system used for this study, recoveriX. A 
complete BCI system (recoveriX, g.tec medical engineering GmbH, Austria) 
was used. EEG signals were transmitted to a biosignal amplifier. Two FES 
devices and avatar were directly controlled via real-time EEG analysis. Each 
FES device controls one hand side. When the EEG is classified as the correct 
hand side of motor imagery (MI) during trials, the FES and avatar are 
activated. FES produces wrist dorsiflexion and the avatar shows the same 
dorsiflexion in the first-person perspective.  

 
Figure 2. Time sequence of one trial. Two seconds after the attention 
beep sound, the MI cue of each trial is presented. The feedback phase 
begins 1.5 seconds later and continues for 4.5 seconds. 
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for left trials is largest in the first row of Z and decreases with 
the subsequent rows. The opposite occurs in a trial with right 
trials. The variances were extracted as reliable features of the 
newly calculated 16 time series for the binary classification 
(left vs right).  

 
According to Mueller-Gerking’s work, the optimal number 

of CSPs was four (to reduce the dimensionality of EEG) [14]. 
Using an artifact corrected training set, XT, only the first and 
last two rows (p = 1, 2, 15, and 16) of W were used to process 
new input X. Then, the variance (VARp) of the times series 
was calculated for a time window T. After normalizing and 
log-transforming, four feature vectors were obtained via 
equation 1.  

                    =
=

4

1
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p p

p
p
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VAR
f                                (1) 

 
 
A linear discriminant analysis (LDA) classified each trial 

as either left or right MI. When the input signals were 
correctly classified according to the assigned task, the 
feedback devices were triggered. This online classification 
was updated and controlled the FES and avatar every 25 ms.  

 
Offline classification accuracy was estimated via a 10-fold 

cross validation. This refers to partitioning a sample of 
movements into 10 complementary subsets and validating the 
analysis on one subset (called the validation set or testing 
pool) and training the CSPs and classifier on the other subsets 
(called the training pool).  

 
The accuracy was calculated (in steps of half a second) for 

all trials in the testing pool within a 4.5 second time window 
beginning 1.5 seconds after the attention beep and ending with 
the end of the trial. For each step and each trial, the 
classification result is either 100% or 0%. The accuracy of all 
trials of the test pool is then averaged for each single step, 
resulting in accuracy levels ranging between 0% and 100%. 
After averaging all ten repetitions of the cross validation, the 
maximum value during the feedback phase was noted as the 
session accuracy. 

 

E. Assessment 
The Fugl-Meyer Assessment (FMA) is a stroke-specific 

method of evaluating sensorimotor functions, balance, joint 
mobility, and joint pain for clinical and research purposes. The 
score indicates the impairment of patients as assessed by 
therapists or medical staffs with high reliability. We used the 
FMA of upper extremity (FMA-UE, maximum score=66 
points) as a primary behavioral outcome measure because the 
upper extremities are the task-related body parts during the 
training. It supports the assessment of the degree of damage 
and describes the recovery after a stroke. 

 

Six secondary outcome variables were also measured. The 
9-Hole Peg Test (9-HPT) measures the time to complete a 
finger dexterity task [15] and the Box and Block Test (BBT) 
measures the number of blocks moved from one place to 
another in one minute [16]. The Barthel Index (BI) is a 
questionnaire designed to test the patient’s ability to care for 
themselves [17]. The Modified Ashworth Scale (MAS) 
examines patient spasticity (with a lower score indicating less 
spasticity in his/her paretic limb). Both the wrist (MASWrist) 
and hand (MASFingers) were tested for this assessment. The 
Fahn Tremor Rating Scale (FTRS) scores tremor intensity in 
the paretic limb.  A lower score in the FTRS indicates smaller 
tremor intensity [18]. Lastly, the Two Point Discrimination 
Test (TPDT) was conducted as a sensitivity measure, with a 
lower score indicating greater sensitivity [19]. 

 

F. Statistical Analysis 
Statistical analyses were carried out using SPSS (ver. 24, 

SPSS, Chicago, IL, USA). The mean of Pre1 and Pre2 was 
considered as the baseline value for each outcome measure 
(Baseline = (Pre1 + Pre2) / 2). Post-assessment represents the 
outcome measure after completion of the 25 training sessions. 

 
The primary and secondary outcomes were statistically 

analyzed after a normal distribution was determined with the 
Shapiro-Wilk test. A two-tailed paired sample t-test or a 
Wilcoxon signed rank test was used to investigate outcome 
changes in the Baseline-Post assessment for normally or non-
normally distributed data, respectively. The Pearson 
correlation was used to analyze the relationship between mean 
classification accuracies and the differences (Post-Baseline) in 
the FMA-UE. The threshold for significance was set to 

=0.05.  
 

III. RESULTS 
 

A total of 7 out of 8 patients successfully met the inclusion 
criteria and gave written informed consent before participating 
in the study. One patient was excluded due to paresis in both 
upper limbs.  

 
The characteristics of the 7 subjects (5 male and 2 female) 

are shown in Table 1. Five patients were left side affected and 
two were right side affected. Average time since stroke onset 
was 9.2 ± 10.7 years and all of them were considered chronic 
patients. 

 
Table 1. Patient Demographics  

 
Gender
 

Male
Female 

5
2 

Affected side
 

Left
Right 

5
2 

Age 58.6 (21.1)
Time since stroke onset 9.2 (10.7)

Age and time since stroke onset are expressed as mean (standard deviation) in 
years. 
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The results of group analyses are shown in Table 2. A 

significant difference was found in FMA-UEtotal (p=0.048) in 
the primary outcome measures. All of the sub-scores of FMA-
UE increased after the intervention, but none showed 
significant differences. In the secondary measures, the 
MASWrist (p=0.046) and MASFingers (p=0.047) had significantly 
decreased. The BI, FTRS, and TPDT did not show any 
statistical changes. It was not possible for more than four 
patients to perform the BBT and the 9-HPT due to their severe 
paresis, and these two measures were not included in this 
analysis.  
  

 
Table 2. Differences at Baseline and Post Measurement   

 
 Mean (standard deviation) 
Parameters Baseline (n=7) Post (n=7)
FMA-UEtotal 27.3 (16.6) 33.7 (18.4)*
     Shoulder 
     Wrist 
     Hand 
     Coordination 

15.2 (10.5) 
2.50 (3.66) 
5.79 (6.00) 
3.79 (0.57) 

19.0 (10.1)
3.86 (4.91) 
6.71 (5.94) 
4.14 (0.69) 

BI 89.9 (10.7) 90.0 (16.3)
MAS  
     MASWrist 2.96 (1.40) 2.29 (1.50) *
     MASFingers 2.71 (1.41) 2.14 (1.35) *
FTRS 7.43 (4.16) 7.43 (4.54)
TPDT 3.92 (0.80) 4.00 (0.63)

FMA-UE: Fugl-Meyer Assessment of the Upper Extremity, BI: Barthel Index, 
MAS: Modified Ashworth Scale, FTRS: Fahn Tremor Rating Scale, TPDT: 
Two-Point Discrimination Test, *significant difference within subject factor 
(p<0.05) 

 
 
The FMA-UE improvement was not related to the mean 

classification accuracy (p=0.708). Classification accuracies of 
the first and last sessions averaged across all the subjects were 
73.6% and 83.5%. The difference between the first and last 
sessions was not significant (p=0.208). See Figure 3 for the 
mean classification accuracies across sessions.   

 

 

IV. DISCUSSION 
 

We evaluated sensorimotor recovery after BCI intervention 
with multiple measures to detect behavioral changes in stroke 
affected patients. The results showed that the primary measure 
of this study, FMA-UE, increased by 6.4 points. This was 
above the minimal clinically important difference 
(MCID=4.25) [20]. Muscle spasm intensity in the wrist and 
fingers was also reduced after intervention.  

 
In this current study, FES and avatar mirroring triggered 

by BCI provided the feedback to link motor imagery to a 
sensorimotor response and complete the sensorimotor loop. A 
recent study also showed that MI-BCI controlled FES yielded 
a 7.87 ± 2.42 (mean ± SD) increase in FMA-UE with 15 
stroke patients [21]. In addition, the shoulder, wrist, and hand 
FMA-UE increased in the study. This study had five fewer 
sessions compared to the current study, but the training 
occurred five times per week. Each BCI session was followed 
by conventional physiotherapy. Also, the time since stroke 
onset (mean: 8 months) in the study was shorter than the 
current study (mean: 9.2 years), which could explain their 
improved FMA scores.   

 
Another study using BCI-cued virtual hand feedback 

showed a 13.6 ± 8.9 (mean ± SD) point increase in FMA-UE 
with 14 stroke patients [22]. Training was performed three 
days per week for four weeks for a total of 12 sessions. This 
marked difference in training effectiveness may be attributable 
to the very different characteristics of the subjects – Sub-acute 
stroke patients were recruited in this study, meaning 
spontaneous recovery may have boosted motor recovery 
beyond the contributions of BCI training alone. 

 
Classification accuracy increased by 9.9% on average in 

the current study, but this increased accuracy was not 
correlated with motor improvement. Improved classification 
accuracy implies patients received more sensory feedback, as 
FES and avatar mirroring were triggered only when the 
algorithm successfully classified the brain oscillation.  

 
We found improvements in sensorimotor function and 

reduced muscle spasm intensity after 25 sessions of BCI 
intervention in stroke affected patients. This present study is 
limited due to the small sample size (n=7) and further work is 
necessary to conclude the efficacy or effects of BCI motor 
rehabilitation training. The patients enrolled in this study 
cannot represent various characteristics of stroke patients due 
to their heterogeneous lesion location, level of paresis, and 
diverse demographics. Therefore, a randomized controlled 
study is planned to test the hypothesis that this BCI approach 
with FES and avatar mirroring promotes more functional 
recovery than other conventional therapies.  
 

 

 

 
 
 
Figure 3. Classification accuracies of each session averaged over all 
subjects (n=7). Thick green line shows the average accuracy of each session 
and error bars indicate the standard deviation in [%].  
Note: y-axis begins at 50% for visualization. 
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