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Abstract. Brain-computer interfaces (BCI) as assistive devices are
designed to provide access to communication, navigation, locomotion
and environmental interaction to individuals with severe motor impair-
ment. In the present paper, we discuss two approaches to communication
using a non-invasive BCI via recording of neurological activity related to
motor imagery. The first approach uses modulations of the sensorimotor
rhythm related to limb movement imagery to continuously modify the
output of an artificial speech synthesizer. The second approach detects
event-related changes to neurological activity during single trial motor
imagery attempts to control a commercial augmentative and alternative
communication device. These two approaches represent two extremes for
BCI-based communication ranging from simple, “button-click” operation
of a speech generating communication device to continuous modulation
of an acoustic output speech synthesizer. The goal of developing along a
continuum is to facilitate adoption and use of communication BCIs to a
heterogeneous target user population.
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1 Introduction

Since developing the first computers, technologists have been trying to reduce
the separation between users and their devices. Moving from punch cards to
keyboards was a dramatic advance, and today we now have reliable voice con-
trol, touch screens and adaptive keyboards with language prediction. In addi-
tion to improving the manner in which people interact with computers, these
new methods are quite useful for providing access to communication systems
for individuals with mild to moderate speech and movement disorders. Still,
these methods require manual or spoken input, which may not be available
to individuals with severe motor impairment and paralysis, specifically, those
with locked-in syndrome (LIS) [1] due to stroke and neurodegenerative disorders
(e.g., amyotrophic lateral sclerosis, ALS). Locked-in syndrome is characterized
by near total paralysis, including the limbs and face, with some remaining eye
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movements and significant amounts of sensation and cognition [2]. Therefore,
individuals with LIS require alternative means for accessing language and com-
munication that does not require overt motor control. For those with reliable
eye movement control, eye-gaze tracking hardware can be used to control high-
tech augmentative and alternative communication devices (AAC), in addition
to other user-customized input methods [3,4]. For individuals without reliable
oculomotor control, brain-computer interfaces (BCI) may be the only method
available to provide access to computers and communication.

The idea behind all BCIs is a straightforward extension of existing assistive
technology, albeit to an extreme degree. Consider the case of spelling on a key-
board using an eye-gaze tracker. In this scenario, the user must first determine
a desired message, identify all the required elements on the communication dis-
play, attend to each element, and make an appropriate oculomotor action to
move the eyes and drive the eye-gaze tracking pointer. For an individual with
LIS, the final oculomotor stage is impaired to such a degree that eye-gaze track-
ing is either impossible or unreliable. Individuals who use a button or mouse click
to make communication device item selections using linear scanning follow a sim-
ilar strategy; desired items are identified and attended to, then cortical motor
commands are issued to activate limb muscles necessary to activate the selection
device. Here too, the final stage of motor command transmission to the periph-
ery is impaired or absent in individuals with LIS. In both examples, the goal of a
BCI is to intercept the last reliable neurological control signal available prior to
attempted activation of the disordered periphery. For the visual attention exam-
ple, it is possible to elicit and record the P300 event-related potential (ERP)
[5–9], and in the button-click example neurological markers of motor planning
and execution for use in communication interfaces [10–14]. A major research
area now is focused on translating BCIs from research settings into practical
user settings [15,16]. One barrier to this translation process arises since most
BCIs use custom communication interface software that may not necessarily
be compatible with existing high-tech AAC devices that are already supported
by commercial and clinical professionals. In this paper, we describe two motor
imagery based BCIs for communication in which one system directly interfaces
with existing AAC devices and the other provides direct speech output without
the need for a separate communication device.

2 BCI as an AAC Device

One barrier to clinical translation of BCI devices is the reliance on custom com-
munication interfaces that often are not compatible with existing AAC devices.
We therefore designed a BCI that does not rely on its own visual interface, rather,
it uses existing AAC devices and software to help elicit neurological activity used
for BCI control. Electroencephalography (EEG) signals are obtained as partici-
pants make covert (or imagined) motor movements of the limbs as they interact
with a Tobii C15 communication device (Tobii-DynaVox). The presentation of
communication items in a linear scanning protocol is expected to generate neu-
rological signals related to both movement preparation and movement execution.
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Specifically, the BCI detects both the contingent negative variation (CNV), a
potential related to the preparation of an upcoming, cued movement [17–19],
and the event-related (de)synchronization (ERD/S), a change in the sensorimo-
tor rhythm spectral power related to the preparation and execution of overt and
covert movement [10–12].

The CNV is an event-related negativity normally elicited in a cue-response
paradigm in which a warning stimulus alerts the participant to an upcoming
event and a following imperative stimulus instructs the participant to produce
a known motor command [17,18]. The linear scanning interface used for this
experiment automatically advances sequentially, therefore, all non-target rows
and columns can be considered as “warning” stimuli1 and the target row or
column is the “imperative” stimulus. The ERD/S is elicited in response to the
preparation and execution of overt and covert motor commands, and are not
dependent on a warning stimulus. Typically, an ERD is observed in the μ and
β bands (8–14 Hz, 15–25 Hz, respectively) as an attenuation in spectral power
around the onset of the intended action. Our BCI uses both movement-related
signals to classify neurological activity into intended or unintended actions that
are used to send a simulated button-press to the AAC device for item selection,
though we only discuss the CNV results below.

2.1 Methods

Six individuals without neurological impairment and one individual with
advanced ALS participated in the AAC-based BCI experiment. EEG was
recorded continuously from each participant from 62 active electrodes (g.HIAmp,
g.tec) at a sampling rate of 512 Hz with notch filters at 58–62 Hz. Participants
were seated in a sound-treated booth in front of a simulated AAC device that
displayed a preprogrammed communication interface page. The device was con-
figured to automatically highlight each communication item sequentially with
a red box (2.5 s interval) and the name of the item was played over the AAC
device speakers. Participants were provided with a randomly selected target
item and instructed to imagine a movement of their dominant hand every time
it was highlighted. EEG signals were bandpass filtered from 0.5–8 Hz to obtain
the CNV.

Offline classification of the CNV that preceded overt and covert movement
for selecting communication items was accomplished using linear discriminant
analysis (LDA) of the average EEG amplitude from −0.23 s to −0.03 s relative
to the onset of item highlighting2. Bipolar surface electromyography was also
collected from the limbs to ensure participants adhered to the motor imagery
instructions. Data was collected from 80 item highlighting trials per condition
(overt and covert) and performance of the LDA classifier was evaluated using a
2-fold cross validation. In this procedure, the first 40 trials per condition were
used to train the classifier and the second 40 trials used for validation, then

1 Though likely strongest for the immediately preceding row or column.
2 Specifically the auditory signal onset.
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the training and validation sets were switched to obtain a full estimate of the
performance.

2.2 Results

Analysis of the EEG data indicated that the CNV was present (statistically
significantly less than zero, 1-tailed t-test, fdr corrected p < 0.05) and spatially
located primarily over bilateral parietal electrodes for all participants (see Figs. 1
and 2). In the overt condition, the CNV was characterized by a slow negativity
followed by a peak negativity immediately prior to auditory stimulus in the
overt condition for participants without neurological impairments. In the covert
condition, only the peak negativity prior to auditory stimulus onset was observed
for participants without neurological impairments. For the participant with ALS,
the overt condition did not elicit demonstrable negativity prior to the auditory
stimulus onset, however a slight negativity was observed immediately prior to
the auditory stimulus onset in the covert condition.

The cross-validation accuracy of the LDA classifier was 64 % in the overt con-
dition for participants without neurological impairment and 60 % in the covert
condition. The cross-validation accuracy of the LDA classifier for the individ-
ual with ALS was 63 % in the covert condition, and was not attempted in the
overt condition due to the lack of statistically significant CNV response. Table 1
includes a summary of individual and average classification accuracy. For all
participants, the classification was based on a 0.2 s window prior to the auditory
stimulus onset, however, the number of electrodes differed based on the location
of the peak CNV negativity on the scalp. In general, the electrodes were cho-
sen from the CP, P and PO locations, and more electrodes passed our inclusion
criteria in the overt condition (average: 3.5, range: 2–7) than the covert con-
dition (average: 1.8, range 1–3). A similar CNV topography was observed for
the individual with ALS, and two electrodes from the CP region were used for
decoding.

Table 1. A summary of offline decoding accuracy for all participants, with (P1–6) and
without (ALS1) neuromotor impairment in the overt and covert production tasks.

P1 P2 P3 P4 P5 P6 Average ALS1

Overt 75.4 % 61.1 % 56.8 % 65.8 % 66.4 % 59.3 % 64.1 % NA

Covert 60.0 % 55.7 % 58.9 % 60.4 % 63.5 % 61.3 % 60.0 % 62.6 %

2.3 Discussion

The AAC-BCI device described in this experiment is designed to simplify BCI
control as much as possible for individuals who already use, or may use BCI
in the future. Our approach for achieving this aim is to rely on existing AAC
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Fig. 1. The topography of average normalized EEG amplitudes in the 200 ms prior
to auditory stimulus onset. The average for all participants without impairment in
the overt condition is shown in (a) and covert in (b). For both conditions, there is
a strong bilateral parietal distribution of negative amplitudes. Similarly, the patterns
of negativity for the participant with ALS show bilateral posterior negativity in both
the overt (c) and covert (d) conditions, with a slightly right-lateralized response in the
covert condition.

technology and techniques that may be most familiar to both users of AAC (who
are also potential users of BCI), and AAC professionals. One of the most basic
ways for controlling AAC devices is through the use of a physical button and a
visual interface with automatically advancing scanning of communication icons.
Such a device can be used by individuals with disordered, but present motor
control. In this experiment, we extend the existing AAC paradigm to BCI by
replacing the AAC item selection mechanism with a “brain switch” controlled
using a neurological potential related to motor planning and motor execution in
a mental button pressing task.

The contingent negative variation is a very well known neurological poten-
tial that precedes movement in a cued paradigm. Classically, this potential is
strongest when individuals know they will be required to make a movement
in the near future, but both the action and its timing are uncertain [17,18].
In this experiment, however, only a portion of these classical factors used to
elicit the CNV are met: (1) movements are made in a cued paradigm and (2)
individuals know they will make movements in the near future. The third fac-
tor, uncertainty of both action and timing, is not met because the AAC device
automatically scans through all available communication items at a predictable
rate. Our preliminary results show that the third requirement is not necessary
for eliciting the CNV; it is present in our paradigm for both individuals with
and without neurological impairments. Further, our offline classification results
show it is possible to accurately predict the occurrence of CNVs in a cued motor
control paradigm. On average, the LDA classifier performed better in the overt
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Fig. 2. A graphical summary of average CNV amplitudes for overt (left column) and
covert (right column) movements in the AAC selection paradigm. The top row repre-
sents average CNVs over all healthy participants (N = 6), the middle row is the average
CNV for one healthy participant and the bottom row is the average CNV for one par-
ticipant with ALS. *: indicates statistically significant differences between target trials
(blue) and non-target trials (red), and the shaded ranges indicate the 95 % confidence
intervals. (Color figure online)

condition than the covert for individuals without neuromotor impairments. Addi-
tionally, the decoder performed marginally better for in the covert condition
for the individual with ALS compared to the participants without impairment,
though no statistical analysis of these differences was performed. These are
promising results that warrant further study of an online decoder for controlling
an AAC device in real-time.

3 BCI-Controlled Speech Synthesizer

Our second BCI implementation provides continuous control over a formant fre-
quency based speech synthesizer through detection of modulations to the sensori-
motor rhythm [20]. The primary advantage of this system is the distinct lack of a
communication interface, rather the user is directly in control of acoustic speech
output. This BCI is based on prior work decoding continuous, two-dimensional
control signals from the EEG sensorimotor rhythm [14]. In previous studies, par-
ticipants learned to control a two-dimensional cursor by performing limb motor
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imagery that modulated the sensorimotor rhythm. In speech, spectral energy of
vowel sounds and transitions into, and out of, consonants can be represented
by low-dimensional acoustic features known as formant frequencies, or formants.
These features are directly related to the dynamically changing configuration
and resonant properties of the vocal tract. It is possible to perfectly represent
all of the monophthong vowels in American English using just the first two for-
mant frequencies (F1 and F2). In addition, there are a number of real-time for-
mant frequency speech synthesizers capable of instantaneous auditory feedback.
Therefore, our BCI decodes continuous modulation of the sensorimotor rhythm
into a two-dimensional formant frequency feature vector that is synthesized and
provided back to the user in real-time.

3.1 Methods

Three individuals without any neuromotor impairments were recruited to partic-
ipate in the BCI-controlled speech synthesizer study. EEG was recorded contin-
uously from 62 active electrodes (g.HIAmp, g.tec) at a sampling rate of 512 Hz
with notch filters from 58–62 Hz. The EEG signals were then rereferenced to the
common average reference and bandpass filtered from 7–15 Hz to obtain the μ
band (i.e., sensorimotor rhythm). Finally, the band power was calculated based
on the analytic amplitude from the Hilbert transform. During the experiment,
vowel sounds were presented visually as a two-dimensional cursor position on a
display with the positions of the three test vowels (/a/, /u/ and /i/). Auditory
stimuli (and BCI feedback) were synthesized in real-time using the Snack Sound
Toolkit (KTH Royal Institute of Technology) and played through pneumatic
insert earphones (ER1, Etymotic, Inc.). Participants were instructed to imagine
moving their right hand when presented with an /a/ stimulus, their left hand
for the /u/ stimulus and their feet for the /i/ stimulus.

During training, participants were asked to imagine the appropriate move-
ment throughout the entire 3 s stimulus period. A total of 135 trials were pre-
sented (45 trials per vowel) with vowels in random order. The sensorimotor
bandpower and target vowel formant frequency velocities (bark/s) were used to
estimate the state and likelihood models of a Kalman filter decoder. Formant
velocities are taken as the change in formant frequency over time. Offline training
and performance was evaluated using a two-fold cross-validation of the correla-
tion coefficient of each formant velocity trajectory to the target vector, and the
combined 2D formant velocity trajectories.

3.2 Results

The procedure for training the Kalman filter decoder revealed asymmetric linear
model weights over the left and right sensorimotor areas (C, CP and FC elec-
trodes) contralateral to the intended movement imagery. In contrast, the model
weights for relating sensorimotor rhythm modulations to the second formant
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Table 2. Pearson’s correlation coefficient (r) of the Kalman filter decoder for predicting
formant frequency velocities in the synthesizer BCI.

F1 F2 Combined

Training set 0.50 0.68 0.66

Validation set 0.35 0.62 0.51

Fig. 3. The Kalman filter decoder linear model weights for each formant velocity dimen-
sion reveal contribution of the sensorimotor electrodes to the motor imagery task.
(a) The model weights for F1 velocities show asymmetric model weights with sign con-
tralateral to the intended left or right limb movement imagery (/u/ and /a/ vowels).
(b) The model weights for F2 velocities show symmetric model weights for the bilateral
foot movement imagery task (/i/ sound)

frequency are symmetric and bilateral. The model weights are shown graphi-
cally in Fig. 3 and confirm the involvement of sensorimotor areas in the motor
imagery task.

A two-fold cross-validation procedure was used to evaluate the offline per-
formance of the trained Kalman filter decoder. The model predicted formant
velocities are shown graphically in Fig. 4. In this figure, the average predicted
formant frequency velocities are shown on the left for /i/ (top), /a/ (middle) and
/u/ (bottom) with 95 % confidence intervals (shaded regions) and velocity tar-
gets in black. These trajectories are shown on the 2D formant velocity plane in
Fig. 4(d) for the /i/ (blue), /a/ (red) and /u/ (yellow) vowels. From this view, it
is possible to observe a more faithful prediction of /i/ vowel velocities compared
to the /a/ and /u/ vowels; however, there is greater overall congruence when
the velocities are integrated in time to obtain final predicted formant frequen-
cies (Fig. 4(d)). These results, quantitatively summarized in Table 2, indicate a
moderate (r = 0.51) correlation between the predicted and target 2D formant
velocity trajectories as well as the correlations of the individual formants to their
targets (F1: r= 0.35, F2: r = 0.62).
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Fig. 4. (Left) A graphical summary of the first and second formant frequency velocities
(F1 blue, F2 red) for the /i/, /a/ and /u/ vowels, respectively in subfigures (a), (b) and
(c). Shaded regions represent the 95 % confidence interval and the black lines represent
target formant velocity trajectories. (right) A graphical summary of the predicted
formant frequency velocities (d) and integrated formants (e) on the 2D formant plane.
Here, the blue line is the average predicted model response for /i/, the red line for /a/
and the yellow line for /u/. The black lines are the target formant responses. Note,
the integrated formants are centered based on the average of the three tested vowels.
(Color figure online)

3.3 Discussion

The BCI-controlled speech synthesizer is fundamentally a limb motor imagery
based BCI for decoding a continuous 2D output vector (similar to [14]), but
in both auditory and visual feedback domains related to speech. Therefore, we
can examine the results of our single pilot participant to determine whether our
protocol, paradigm and BCI algorithms are functioning appropriately. Specifi-
cally, we can examine the Kalman filter linear model weights, which represent
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the relationship between modulations in the 7–15 Hz sensorimotor rhythm and
target formant velocity for each vowel production – motor imagery trial. In this
way, the model weights themselves are informative for determining the spatial
topography of EEG activity participants use to complete the vowel synthesizer
task.

The results of our offline decoding analysis reveal a scalp topography of model
weights that reflect differential activation for the control of the first formant fre-
quency, and coordinated activation for controlling the second formant frequency.
This asymmetric response is expected because we asked participants to use con-
tralateral limb motor imagery for the vowels /a/ and /u/ which differ almost
entirely in the first formant. Similarly, a coordinated, bilateral topography for
controlling the second format agrees with the instructed task for associating
bilateral foot movement imagery with productions of the vowel /i/, which pri-
marily differs from /a/ and /u/ in the second formant. Finally, the moderate
correlation of predicted formant frequency velocities to targets is promising for
continued investigation in an online control paradigm. The addition of closed-
loop feedback of audio and visual information, should help to generate error
control signals used to improve the continuous BCI control for the production
of the vowels /a/, /i/ and /u/.

4 Conclusions

In the present paper, we examine two BCIs for communication using two sep-
arate control techniques. In the first example, we extend existing AAC input
signal designs for accessing communication software programs using a “brain
switch.” This approach decodes and uses the neurological potentials related to a
mental button pressing task to select items on a communication interface. Our
preliminary evidence provides some encouraging results for continuing to explore
this BCI application in real-time with additional participants with and without
neurological impairments. In the second example, we validated our approach for
decoding continuously varying two-dimensional formant frequencies from sen-
sorimotor rhythm modulations. Our modeling results are compatible with past
studies of SMR-based BCIs for 2D cursor control, and the offline prediction of
formant frequencies is reliable enough for additional study of online control of a
speech synthesizer via BCI.
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