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Abstract— Today, technology provides many ways for humans 

to exchange their points of view about pretty much everything. 
Visual, audio and tactile media are most commonly used by 
humans, and they support communication in such a natural way 
that we don’t even actively think about using them. But what about 
people who have lost motor or sensory capabilities for whom it is 
difficult or impossible to control or perceive the output of such 
technologies? In this case, perhaps the only way to communicate 
might be to use brain signals directly. The goal of this study is 
therefore towards providing people with tetraplegia, who may be 
confined to their room or bed, with a telepresence tool that 
facilitates the daily interactions so many of us take for granted.  
In our case, the telepresence tool is a robot that is remotely 
controlled. It can act as a medium for the user in their everyday 
life with the design of a virtual link with friends and relatives 
located in remote rooms or places or with different environments 
to explore. Therefore, the objective is to design a Human-Machine 
System that enables the control of a robot using thoughts alone. 
The technological part is composed of a brain-computer interface 
and a visual interface to implement an “emulated haptic shared 
control” of the robot. Shared motion control is implemented 
between the user and the robot as well as an adaptive function 
allocation to manage the difficulty of the situation. The control 
schema that exploits this “emulated haptic feedback” has been 
designed and evaluated using a Human-Machine Cooperation 
framework and the benefit of this type of interaction has been 
evaluated with five participants. Initial results indicate better 
control and cooperation with the “emulated haptic feedback” than 
without.   

Keywords—disability, brain-computer interface, human-
machine cooperation, adaptive level of automation  

I.  INTRODUCTION  
Our long-term vision is to improve quality of life for people 

who may be confined to a bed and are unable to use conventional 
interfaces, e.g. perhaps due to tetraplegia. The aim of this study 
is to develop an assistance system to compensate the user’s 
inabilities, consequently enabling interactions with parents, 
friends and environment using a brain-controlled telepresence 
system. In particular, we apply the principles of Human-
Machine Cooperation (HMC) to understand how the human will 
be able to operate the device effectively. The results of this new 
five-participant experiment, build upon our previous single-user 
case-study [1]. With substantially more data and an improved 
experimental design, we are now able to perform in depth 
analysis and draw conclusions on the efficacy of this approach. 

The HMC approach has been designed and applied in several 
different domains [2], [3] and especially in ground robotics [4]. 
The main purpose of this approach is to design and use a generic 
method that supports designers in identifying how the user may 

cooperate with an assistance system, especially regarding the 
dynamic selection of suitable adaptive levels of automation [5], 
whilst improving their performance, safety [6] and their 
confidence [7]. 

Key concepts in the fields of HMC and brain-computer 
interfaces (BCI) are briefly presented in order to introduce the 
specific challenges of our cooperative system. We then present 
the new experiment conducted with five able-bodied 
participants, before discussing the results. Finally, we conclude 
that “emulated haptic feedback” is a good way to support 
Human-BCI-Robot cooperation. Nevertheless, we propose 
further refinements to improve system usability. 

II. RELATED WORK   
In this section we present the key concepts used to design 

such a Human-Machine System (HMS). They deal with models 
of cooperative agent, Brain-Computer Interfaces (BCI) as well 
as cooperative design.  

A. Model of cooperative agent  
The objective of the Human-machine cooperation approach 

is a find the best balance between the Know-How (KH) of the 
human and the machine to perform a function, whilst taking into 
account their abilities to cooperate with the other, called the 
Know-How-to-Cooperate (KHC). 

The KH relates an agent’s competences (abilities) and 
capacity (workload or attention for example) to control a process 
or an environment as if this agent were to do it alone. The agent 
has more or less expertise or training to fulfil functions (based 
on knowledge, rules and skills [8]), linked to expertise, 
experience and practices of agents with these functions. Human 
information processing might be sometimes very complex, but 
we used a framework to reduce the complexity into four main 
functions [6]: information gathering on the environment; 
analysis of information in order to identify its state 
(diagnosis/prognostic); decision making regarding its control; 
and action implementation. In our study, the user and the robot 
both have to be aware of their abilities to get information about 
the environment in which the robot is running, to analyze 
information, avoid obstacles and reach the goals.  

The KHC is the ability of agents to obtain information about 
other agents reaching the same goals or using the same 
procedures, and to provide them with information about 
themselves and their own activity in order to make the 
cooperative activity easier [2]. The support of the KHC, so called 
the Common Work Space, enables agents to be aware of 
environment, but is also enriched by the team situation 
awareness dealing with past, current and future activity of other 
agents [9].  
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Fig. 1 Human-machine cooperation model [10]. 

Thanks to this cooperative capability, agents may build up a 
model of others by learning, training and exchanging with other 
agents. With this model they can then be able to infer their KH 
and KHC. 

Using the artificial intelligence point of view, and more 
particularly the multi-agent approach, KH and KHC define two 
interwoven functions described by four sub-functions as 
presented in Fig. 1. The Common Work Space, represented by 
the central rectangle, supports interactions between agents and 
to decide function allocation. They compare the inference of 
results stemming from the information processing of the other, 
to their own results (interference detection and management) to 
adjust the position of the four sliders that describe the functions 
allocation (scales represented in the Common Work Space). The 
position of a slider on a scale defines the percentage of sharing 
between the human and the automation function. It is not only 
decided according to the agents’ KH but also according to the 
complementarity between these KHs analyzed through their 
KHCs. For example, two agents can be completely 
complementary regarding their KH, but if they have no KHC 
they cannot take into account the others’ activity to adjust their 
own activity and reach their common goal. 

These definitions and concepts can be used as a methodology 
to follow to identify and design cooperation between a robot and 
a human through the BCI system that is now presented. 

B. Brain-Computer Interface (BCI) 
We use the same fundamental BCI that we developed for our 

original case-study [1], which was constructed around CNBI’s 
motor imagery protocol [11]. The user can perform one of two 
tasks: imagine moving either their left or right hand and these 
are then decoded by the BCI, giving two classes for control. A 
third implicit class exists, when the user does not imagine 
moving either hand and in this case the control authority is 
delegated entirely to the robot. This self-paced, asynchronous 
BCI has been demonstrated to be a potentially viable in many 

different application areas, ranging from wheelchairs [12] to 
exoskeletons [13] and is of particular interest, since it is skill-
based.  

In the CNBI protocol, the electroencephalogram (EEG, or 
electrical activity of the brain) is recorded non-invasively at 
512Hz, using the g.GAMMA system by g.Tec GmbH. Sixteen 
electrodes are placed directly over the Motor Cortex. After 
Laplacian filtering the EEG to improve the signal-to-noise ratio, 
we use Welch’s method to estimate the power spectral density 
(PSD) for the previous one second, every 62.5ms (from 4 to 
48Hz, with 2Hz bins [14]). Using canonical variate analysis 
(CVA), we then select the features for each participant that 
maximally separate the classes, whilst being most stable [15]. A 
Gaussian classifier is then trained on these features, which, in 
line with the literature, varied from participant to participant, but 
were typically found within in the mu-band (~8-13Hz) for 
channels C1/C3 and C2/C4. Classifier accuracy within the BCI 
community is often reported to be good at only around 70%. 
However, this is insufficient for our real-time control task, since 
any error in sending commands to the robot could add a 
substantial penalty in terms of time and effort taken to correct it. 
Therefore, to improve the accuracy at the level of commands 
sent to the robot, the instantaneous classifier outputs were passed 
through an exponential smoothing probability integration 
framework [16]. Once the accumulated value reached a 
participant-specific threshold, a command was finally delivered; 
e.g. left hand motor imagery was mapped to issue a turn left 
command to the robot. 

C.   Human-BCI-robot cooperation 
The design of HMS usually requests the analysis of the 

overall system according to levels of abstraction of activity. 
Whatever the domain of application, the more common levels 
are the strategic, tactical and operational ones. From these levels, 
which are more focused on individual activity, the layers of 
cooperation were defined [17].  
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Fig. 2 Model of cooperation between Human, BCI and Robot according to their Know-How and their Know-How-to-Cooperate, Common Work Space 

between BCI and Human (1), Common Work Space between Human and Robot (2) 

 

Layers deal with cooperation between levels to ensure a 
longitudinal control from navigation, to guidance and 
command. In this HMS composed by a user, a BCI and a robot, 
two layers have been studied and defined. The operational layer 
deals with the obstacle avoidance (OA), which both agents can 
manage. The tactical layer updates the plan of the activity, by 
modifying the trajectory to reach the goal and controlling 
avoidance of unexpected obstacles, when this can currently only 
be managed by the user.  

Indeed, in this case of telepresence, human has no real goals 
but may have several small ones according to opportunities such 
as searching information, meeting different people. Moreover, 
providing precise goal with position for example to the robot is 
almost impossible, due to the relatively low resolution and 
throughput of the BCI as an interface. The robot cannot yet 
recognize human intention and is so unable to define the 
trajectory itself to reach it. Therefore, the robot has no KH or 
KHC at the tactical layer. 

At the operational layer, both human and robot can control 
trajectory and obstacle avoidance (OA). The human detect 
obstacles through a live video stream of the environment from 
the robot’s perspective (cf. Fig. 2, (2)) ; and the robot detect 
obstacles thanks to its ultrasonic sensor (shared information 
gathering and analysis). Both make decisions (shared decision), 
but the robot is the only one which can execute the decision and 
update the trajectory.  

Both the human and the robot get information about each 
other. Interferences might be detected and managed, like the 
detection of obstacle or wrong command by the way of the 
Common Work Space (cf. Fig. 2: KHC). Nevertheless, the final 
decision to move to the right or the left is made by the robot, 
mainly due to the limited capacity of the human to react quickly 
to an unexpected situation. That is an inherent constraint of the 
current state-of-the art in this type of BCI and indeed is always 
a challenge in teleoperation situations, where unpredictable 
transmission delays may occur. In order to compensate such a 

behavior, we defined the “emulated haptic shared control” [1]. 
This specific type of control is based on the detection and 
management of interference, functions of the KHC.  

Haptic control has been used for a long time in robotics, 
aeronautics and in car driving adding a force feedback in the 
command device, sticks or steering wheel to intuitively 
communicate the “intent” of the automation, whilst allowing the 
user to assert their control authority [18]. The concept we 
propose has been based on a similar principle. However, when 
a command is sent via a BCI, no muscles can oppose or follow 
the direction provided by the system, so we cannot use real 
haptic feedback. Therefore, the idea is to emulate this haptic 
negotiation for control authority by changing the behavior of 
the classifier output and illustrating this on a visual display. The 
robot/BCI system makes the action implementation easier or 
more difficult, in terms of (mental) effort, for the human, 
according to where obstacles are detected. The ease or difficulty 
is conveyed to the user through our standard visual feedback 
(cf. Fig. 3, (1)). When the user performs motor imagery, the 
grey bar moves to the left or right depending upon which hand 
the user focuses on. When the grey bar touches right or left 
arrows, it delivers the corresponding turn command. In the past, 
shared control systems would only provide assistance after a 
command had been issued. However, we now dynamically 
increase or decrease the thresholds to deliver BCI commands 
(by a 10% change in arrow size), which makes the turn or no 
turn (mentally) easier or more difficult. This is a corollary of 
“haptic” feedback, although in our case no real contact forces 
or muscle activations are involved. This new concept was first 
presented in a single user case study [1] but is now explored in 
much greater detail here with our five-participant study. 

III. IMPLEMENTATION AND TESTS 
This experiment aims to evaluate the potential of “emulated 

haptic feedback” to control a robot with a BCI. An initial pilot 
experiment was conducted to validate technical feasibility and 
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human ability to control such a system [1]. A new complete 
experimental protocol has now been proposed and is explained 
as follows. 

A. Use case 
During the experiments the participants had to control the 

robot in order to follow the trajectory indicated by the white tape 
on the floor, whilst avoiding the obstacles (cf. Fig. 3 (a)). The 
robot is not able to follow the proposed trajectory because it 
cannot perceive the tape, just as it would not know where a user 
would like it to go with a remote control. However, this serves 
as a ground truth for the human “intention”. 

B. Experimental platform 
1) Mobile robots  

The mobile robot is a Lego Mindstorms NXT (cf. Fig. 3 (b)). 
It is a small, low-cost robot, supporting rapid prototyping to 
study cooperation between robot and human. 

 
 (a) Experimental room (b) Lego Mindstorms NXT 

Fig. 3 Experimental environment and telepresence robot platform 

The robot sends its information analysis based on its 3 
sensors (ultrasonic, gyroscope and contact) through an XBee 
module, and video feedback by Wi-Fi with the smartphone. It 
receives commands from the user through the same XBee 
module. The 3 motors of the robot control the two wheels 
(speed: 0.06 m/s) and the lateral rotation of the ultrasonic sensor 
(60° angle). When the robot detects an obstacle less than 40cm 
away, it only notifies the human. However, when the distance 
is less than 10cm, the robot stops. When the user sends a 
command to go on the right or left, the robot performs a 45° turn 
in the requested direction. 

2) Control interface 

The visual interface proposed to the user is presented on Fig. 
4. Two displays are used, a video feedback provided by the 
robot about the environment, and the emulated haptic feedback 
to send the command (right or left) to the robot. 

First, the users are trained with the BCI, and the BCI trained 
with the user to build a model (mutual learning, cf. II.B). For 
the users to be able to control the robot, they have to relax their 
hands loosely on their lap and must imagine the kinesthetic 
movement of their left or the right hand. It is not so easy, but 
when they succeed, the grey bar rendered on the screen moves 
in the direction corresponding to the imagined hand movement. 
The motion of the grey bar may represent the intention of the 
user if the model the BCI uses regarding the user is well-trained 
and correctly calibrated. 

 
Fig. 4 BCI/Emulated haptic control interface. Visual feedback is provided 

about the state of the BCI system as well as the environment in 
which the robot is operating. 

Controlling this type of device requires the user to be very 
focused on a single task to prevent interferences in the detection 
and analysis of signal. They have to avoid contracting muscles, 
even the position of the eyes. However, such a request is 
unfortunately easier to respect for people with tetraplegia, since 
they have few volitional control of large muscle groups. 
Nevertheless, before gaining approval to work with tetraplegic 
users, we must first evaluate the prototype with healthy, able-
bodied participants. 

IV. EXPERIMENTAL PROTOCOL 

The training session is split into three stages. 1) Approx. 30 
minutes: using only the BCI, the computer learns the specific 
patterns of the participant’s brain signals, initially without them 
directly controlling the feedback (offline). 2) Between two 
hours and five days: once an initial classifier has been built, the 
user directly controls the motion of the visual feedback bar with 
the BCI and the classifier is updated using this (online) training 
data. 3) Approx. two hours: finally, the user learns to operate 
the robot with the BCI in a free exploration task; the participant 
trains both with and without emulated haptic feedback in this 
stage. The course was then driven once under each of the two 
experimental conditions: using emulated haptic feedback (HE) 
or not using the Emulated Haptic feedback (HNE).  

V. RESULTS AND DISCUSSION 
These results stem from objective and subjective analysis of 

video records, combined with a data log recorded during the 
experiments and post-condition questionnaires. A coding of 
participants’ and robots’ actions has been undertaken in order 
to identify the global performance for each experimental 
condition and to value the quality of cooperation. The global 
performance has been calculated according to the number of 
sections of the trajectory the participants correctly traversed (cf. 
Fig. 5), as well as the number of loops they made in order to 
complete each section correctly. They did not need to follow 
every curve of the path precisely, but rather complete the sectors 
in the correct order and avoid the obstacles. 

The quality of cooperation has been evaluated according to 
the number of interferences between the participants and the 
robot. The first type of interference occurs when the robot does 
not take into account the command from the participant because 
of (occasional) communication problems with the Xbee, which 
is not an unrealistic scenario for telepresence systems. The 
second type of interference relates to the stopping of the robot 
when it is too close to an obstacle (< 10 cm). 
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Fig. 5 The four sections of the trajectory (orange and green sections from 
1 to 4) and an example of loop (black drawing) 

The next type of data that has been analyzed is the action 
performed by the participants and the robot. The number of 
commands could indicate the level of cooperation; e.g. when 
the participant “fights” against robot’s decision to go in the 
opposite to their desired direction, the number of commands 
increases. The last type of data is the number of collisions the 
robot encounters. 

A. Results 

1)  Objective data  

In the HE experimental condition, the robot makes fewer 
stops than in the other condition (cf. Fig. 6). This result is 
perhaps thanks to the Emulated Haptic feedback, which makes 
it more difficult for the participant to send the robot in a 
direction where there is clearly an obstacle. 

  
Fig. 6 Number of stops of the robot because it detects an obstacle, and 

number of collisions per experimental condition  

The mean number of collisions is not very substantial (less 
than 1 on average per condition), nevertheless it is smaller with 
emulated haptic feedback (cf. Fig. 6). 

There is not much difference in the total number of 
commands sent by the participants in both conditions (cf. Fig. 
7). Similarly, the number of loops in both conditions is 
comparable. Nevertheless, the results highlight more inter-
individual differences in HNE than in HE. A hypothesis could 
be an effect of homogenization with emulated haptic feedback. 
On average, users complete more “correct” sections of the 
trajectory with HE. 

 

 
Fig. 7  Number of command sent by the participants, number of loops, 

and number of correct sections for each experimental condition. 

2) BCI Accuracy: Objective and subjective data 

The BCI command accuracy was calculated at the end of the 
training session, just before the experimental sessions. The 
score is very good (mean: 92%; std: 5%). This result is 
consolidated by the results from questionnaires concerning the 
evaluation of training from the participant point of view: 

� Were you trained sufficiently to use the BCI? (from 1 
(not at all) to 7 (absolutely)) 

� Were you trained sufficiently to use the BCI and the 
robot? (from 1 (not at all) to 7 (absolutely)) 

Participants felt they were sufficiently trained with BCI and 
with BCI and robot at the same time (first question (mean: 6.6, 
std: 0.54); second question (mean: 6.2, std: 1.30)). The control 
of BCI and robot at the same time is more difficult because 
participants had more tasks to perform to control the 
environment and the robot. 

BCI accuracy is correlated to two objective results: the 
number of commands (r: 0.77); and the number of sections that 
had been followed correctly (r: 0.77). We can suppose that the 
participants who felt in control of the BCI were not afraid to 
send several commands and were able to better adapt the 
trajectory in a manner that more closely respected the requested 
trajectory. 

3) Results stemming from subjective data records 

a) Questionnaires: Expertise of participants 
A performance score has been calculated for each 

participant for each experimental condition. It is the sum of the 
number of collisions (coef.: -0.5), plus the number of loops 
(coef.:-0.5), plus the number of correct sections traversed (cf. 
Fig. 8). An expertise score has been calculated according to the 
participant’s expertise regarding the control of robot and the use 
of BCI. The participants had to answer to the two next questions 
by selecting one choice.  
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The sum of the two answers provides the score: Never (0), 
Occasionally (0.5), Sometimes (1), Often (1.5), Always (2). 

Questions to evaluate participant expertise: 

� Have you ever used a BCI before the experiment?   
� Have you ever used a robot before the experiment?  

Questions to know preferred experimental condition: 

� Which interface did you prefer? (Without emulated haptic 
support, With emulated haptic support) 
 

There is a strong correlation (r: 0.9) between the expertise 
score and the score of the preferred experimental condition 
(type of system). The less the participant felt expert the worse 
the participant performed in their preferred experimental 
condition. The more the participant felt expert, the more likely 
they would make a good decision, the more the robot needed to 
stop (r: 0.79) and the fewer the number of resultant loops (r: -
0.71). One explanation could be, the more the participant is 
expert the better the participant can manage interferences with 
the robot and the BCI to achieve good overall performance. 

 
Fig. 8 Performance score for each participant (C1 to C5) for each 

experimental condition 

VI. CONCLUSIONS AND PERSPECTIVES  
We have presented a human-robot cooperation system 

whose ultimate goal is to allow people with tetraplegia to 
cooperate with and remotely control a robot using a BCI. This 
paper reported an empirical study with five able-bodied 
participants to evaluate the cooperation between human and 
robot. The cooperation is designed using the human-machine 
cooperation model and is evaluated using both objective and 
subjective data. Generally, the results highlighted a better 
cooperation under the emulated haptic support mode.  

In future work, we would like to give more assistance to the 
human operator by adapting dynamically the behavior of the 
robot according to the human state. In fact, we assume that such 
a task required a high level of concentration and mental 
workload. In this regard, we envisage a BCI able to monitor 
human operator states [19]. In addition, we aim to reduce the 
number of false positives or indeed to help the BCI to 
(continuously) retrain the classifier [20]. The robot behavior 
could then be improved by dynamically adapting its level of 
automation [5], i.e. increase the level of automation of the robot 
when the level of human mental workload is high. 
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