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Abstract

Decoding brain activities from brain signals is an important and challeng-

ing technology. An interface based on brain activities is called a brain ma-

chine/computer interface (BMI/BCI). BMIs capture brain activities evoked

by mental tasks or external stimuli and translate them into commands for

controlling devices or messages for users. This study is especially focused

on BMIs with electroencephalogram (EEG) using repetitive visual stimuli,

which elicit steady-state visual evoked potentials (SSVEPs).

A typical way of achieving command input with SSVEP-based BMI is

subject to eye-movement. In a similar way, the command input can be im-

plemented with an eye tracking system based on dwelling time. Evaluations

of both interfaces have been widely reported in their own research commu-

nities, and it is acknowledged that both can accomplish high precision in

terms of recognition accuracy. However, to our knowledge there have been

no attempts to quantitatively compare their performances on the same ex-

perimental platform. Thus, firstly in this study, we compare between SSVEP-

based BMI and dwelling-based ETI, and attempted to clarify their drawbacks

and advantages. We evaluate their performance by investigating their accu-

racies and information transfer rate (ITR) with respect to the target size and

the command analysis time, i.e., time window length of EEG analysis or the

dwell time.

Among SSVEP-BMIs, a state-of-the-art is the one based on hybrid fre-

quency and phase coded SSVEP, which needs a large set of calibration data

as reference signals, called individual templates. This calibration can be la-

borious and time-consuming. Therefore, we propose a new approach for
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reducing calibration time by transferring the individual template of a cer-

tain command, called a source template, to obtain new templates of the other

commands, called target templates. The target templates are generated by

shifting the frequency and phase of the source template to the desired fre-

quency and phase. Moreover, we propose a method employing multiset

canonical correlation analysis (MCCA) for detecting hybrid coded SSVEPs

which aimed to compensate the decrease of recognition accuracy when cali-

bration is reduced.

Equally importantly, the operations of the BMIs should be asynchronous

in a practical use. However, a very limited number of works on asynchronous

SSVEP-based BMIs have been reported. Most of the current BMIs based on

SSVEP are synchronous, as the timing of a command entry is often indicated

by some cues and is controlled by the BMIs. Moreover, the previous studies

which proposed asynchronous SSVEP-based BMIs utilize only frequencies

for visual stimuli, which led to a limited number of commands. Hence, we

propose hybrid-coded visual stimuli in an asynchronous BMI, yielding an

increase of the number of commands.

The experiments are conducted with 10–11 healthy subjects, and their

EEG signals were analyzed offline. The experimental results showed that

the BMI was comparable to the eye tracking system in terms of accuracy and

the information transfer rate. In particular, when the size of a target was

relatively small, the BMI had significantly better performance than the ETI.

In addition, the proposed method for calibration reduction enabled to rec-

ognize both frequency and phase with a small amount of calibration closely

achieving the performance using the full calibration data. Besides, the pro-

posed method using MCCA showed a significant improvement in command

recognition accuracy and ITR with the proposed method compared to the

state-of-the-art. Finally, our proposed asynchronous BMI based on hybrid-

coded SSVEP showed a promising performance and enabled a large increase
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in the number of commands.
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Chapter 1

Introduction

1.1 Background

Brain–computer/machine interfacing (BMI/BMI) is an emerging potential

application of signal processing, machine learning, and neuroscience that

provides a communication pathway between a brain and an external world,

enabling control of assistive technologies, environmental control, interaction

with other people [1, 2, 3, 4, 5, 6, 7]. BMIs capture brain activities evoked by

mental tasks or external stimuli and translate them into commands for con-

trolling devices or messages for users. Thus, the BMIs enable people with

severe motor disabilities to communicate and control devices without mus-

cular movements. In addition, using feedback that people receive while ob-

serving the message, the BMIs can also be a tool for rehabilitation by inducing

brain plasticity to restore motor function [8, 9].

Such brain activities for BMIs can be measured by noninvasive meth-

ods including electroencephalography (EEG) [10, 11]. In terms of uses for

BMIs, the widely-used features can be divided into two types: exogenous

and endogenous ones. Exogenous responses include event-related potentials

(ERPs) evoked by sensory events such as visual, auditory, and somatosen-

sory stimuli [12, 13, 14, 15]. These are also known as visual evoked poten-

tials (VEPs) [16], auditory evoked potentials (AEPs) [17], and somatosensory

evoked potentials (SSEPs) [15] depending on the type of associated sense.
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VEPs elicited with repetitive visual stimuli are called steady state visual evoked

potentials (SSVEPs) [18, 19], which are phase-locked responses to a periodic

visual stimulus with a constant frequency [20], for example, flickering lights,

images, checkerboards [19]. SSVEPs contain stationary periodic oscillations

with the same frequency as the visual stimulus, its harmonics, and its sub-

harmonics [21].

Endogenous responses include ERPs evoked by cognitive or motor events,

and event-related (de)synchronization (ERD/ERS) also evoked by cognitive

or motor events. Cognitive events are, for example, ones related to atten-

tion, memory, and language. Motor events are, for example, ones related to

the preparation or the imagery of movement [22, 23, 24]. Generally speak-

ing, BMIs based on exogenous responses require less user training than that

based on endogenous responses [25, 19]. Specifically, BMIs based on SSVEPs

have high recognition accuracies and require only a short time to enter a

command; hence, they result in a high information transfer rate (ITR) [26],

which is a measure used to evaluate the accuracy, the mean time to enter one

command, and the number of choices/commands [2].

1.2 Problems

A typical way of achieving command input with SSVEP-based BMI is as fol-

lows. First, multiple visual stimuli whose flickering frequencies differ from

one another are shown on a screen to the user. Each visual stimulus corre-

sponds to each command. Next, the user gazes at one of the visual stimuli

that corresponds to his or her desired command. Then, with proper signal

processing, the BMI recognizes which stimulus the user is gazing at, that is,

which command the user would like to input. Conversely, the target on a

screen at which the user gazes can also be measured by tracking the point

of the gaze, that is, where the user is looking. The technique that tracks the
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point of the gaze is called eye tracking, and interfaces that allow command

input using eye tracking are often called eye tracking interfaces (ETIs) [27,

28, 29, 30]. Among several techniques for command entry on ETIs, inputting

a command by gazing at a target for more than predefined time—known as

dwelling—is one of the most straightforward and commonly used methods

[31], and it does not require any physical movement of the limbs. Both BMI

and ETI are user interfaces that utilize visual perception. Evaluations of both

interfaces have been widely reported in their own research communities [32,

33], and it is acknowledged that both can accomplish high precision in terms

of recognition accuracy [34, 35]. However, to our knowledge there have been

no attempts to quantitatively compare their performances on the same ex-

perimental platform.

Among SSVEP-BMIs, a state-of-the-art is the one based on hybrid fre-

quency and phase coded SSVEP, which needs a large set of calibration data

as reference signals, so-called individual templates. A major issue which still

remains on these algorithms is that they require a long time for calibration to

obtain an acceptable individual template. Such a calibration step can take a

lot of time and energy and might cause a visual fatigue before an actual use.

A method for calibration reduction has been proposed by authors [36]. It

enabled massive reduction of calibration time, however, it also led to a cut-

back of recognition accuracy. Recently, a method of detecting hybrid-coded

SSVEPs has been proposed [37]. The method employed canonical correla-

tion analysis (CCA)[38, 39] utilizing a training set, and enabled increasing a

number of commands, improving a recognition accuracy, and boosting an in-

formation transfer rate (ITR) [2]. However, this CCA-based method requires

to solve a generalized eigenvalue problem several times to obtain multiple

spatial filters which enhance SSVEP components, and there is a room for im-

provement in the performance yet.
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Additionally, SSVEP-based BMIs are advantageous in terms of the recog-

nition accuracy and the ITR, most of their operations are required to be asyn-

chronous in a practical use [40, 41, 42]. However, a very limited number of

works on asynchronous SSVEP-based BMIs have been reported [43, 44, 41,

45, 46]. Most of the current BMIs based on SSVEP are synchronous, as the

timing of a command entry is often indicated by some cues and is controlled

by the BMIs, and operations are executed in a certain time interval. In other

words, synchronous BMIs attempt to interpret all signals which a brain con-

stantly generates as a user intent.

The study focuses on four following unexplored problems and challenges

regarding to SSVEP-based BMI;

1) comparison with ETI

2) calibration reduction

3) achieving higher recognition accuracy

4) asynchronousness

1.3 Solutions

We propose a method to solve the problems 1), 2), 3), and 4) in Chapter 3, 4,

5, and 6, respectively. In Chapter 3, we compare between BMI and ETI, and

clarify their drawbacks and advantages. Specifically, we compare between a

SSVEP-based BMI and a dwelling-based ETI. We evaluate their performance

by investigating their accuracies and ITR with respect to the target size and

the command analysis time, i.e., time window length of EEG analysis or the

dwell time.

Chapter 4 utterly proposes a novel approach to calibration reduction by

transferring the individual template of a certain command, called a source
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template, to obtain new templates of the other commands, called target tem-

plates. The target templates are generated by shifting the frequency and

phase of the source template to the desired frequency and phase. An ex-

periment with a mixed-coded SSVEP-BMI was conducted to evaluate perfor-

mance of the proposed method in terms of the recognition accuracy.

In Chapter 5, we propose to employ multiset canonical correlation analy-

sis (MCCA) [47] for detecting mixed coded SSVEPs in order to simplify the

CCA-based method [37]. Since MCCA enables us to evaluate a relationship

between multiple datasets simultaneously, the proposed method requires to

solve the generalized eigenvalue problem just once in order to obtain spatial

filters. Moreover, we hypothesize that we can expect higher recognition accu-

racy by utilizing the eigenvalue as a feature. An experiment was conducted

to evaluate performance of the proposed method in terms of the recognition

accuracy and the ITR.

In Chapter 6, we propose to use not only frequency but also phase, known

as mixed-coded visual stimuli [48, 37, 49] in an asynchronous BMI, yielding

an increase of the number of choices/commands. So as to detect the phase of

SSVEPs asynchronously, the visual stimuli were presented as flickers putting

a non-flickering blank interval between each flickering interval to synchro-

nize the recorder of EEG with the stimuli. For discriminating between IC

and NC states as well as detecting commands in the case of mixed-coded

visual stimuli, the proposed system incorporates a novel method that ex-

ploits MCCA [47, 49], yielding spatial filters that enhance the SSVEP com-

ponent. We hypothesized that the proposed implementation with the pro-

posed MCCA decoder would increase the accuracy in command detection

compared to the conventional decoders in the classical setting of frequency-

coded stimuli.
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1.4 Organization of Thesis

As depicted in Figure 1.1, this thesis is divided into seven chapters. In Chap-

ter 1, the background regarding this work, the problems, the ideas of the

proposed method is discussed. Chapter 2 introduces the fundamentals of

BMIs. Chapter 3 describes the comparison between BMI and ETI. In Chap-

ter 4, we propose a novel approach to calibration reduction. In Chapter 5,

a method for detecting mixed coded SSVEPs is introduced. In Chapter 6, a

novel mixed-coded SSVEP-based BMI is proposed. Finally, Chapter 7 con-

cludes the thesis.
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Chapter 2

Brain–Machine Interfaces

In this chapter, the overview of BMIs is described. In Section 2.1, we describe

fundamental structures of BMI. In Section 2.2, several methods for measuring

brain activities are listed. In Section 2.3, some EEG features used in BMIs are

described. Finally in Section 2.4, we briefly introduce asynchronous BMI.

2.1 Fundamentals of BMI

BMI provides a communication pathway between a brain and an external

world [1, 2, 5, 6, 7]. In terms of “the brain to the external world”, BMIs

capture brain activities evoked by mental tasks or external stimuli and en-

able people with severe motor disabilities to communicate and control de-

vices without muscular movements. Thus, the BMIs enable people with se-

vere motor disabilities to communicate and control devices without muscu-

lar movements. In addition, using feedback which people receives observing

the output, the BMIs can also be a tool for rehabilitation by inducing brain

plasticity to restore motor function [8, 9].

2.1.1 Scopes

Therefore, BMI has a potential to help people with severe motor disabilities,

such as amyotrophic lateral sclerosis (ALS) [50]. The number of people living
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Feedback

Data 
Acquisition

FIGURE 2.1: Structure of BMI.

with ALS is estimated at around 450,000 worldwide. Additionally, global

average life expectancy have been increasing for last several decades, which

leads to the aging society. BMI can be one of the way to assist those aging

and disable population since it does not require any muscular movements of

limb.

2.1.2 Design

Figure 2.1 shows an essential structure of BMI. As shown in the figure, a

procedure of BMI system can be divided into the following four steps.

Step 1 A user performs a certain task which induces a specific neuronal acti-

vation. The task can be mental tasks such as imagination of something

or turning attention to a visual, auditory, tactile stimulus, and so forth.

Step 2 Brain activities are measured by a measurement system. The acquired

signals are converted to the digital signal by an A/D converter after

amplification and filtering are applied.
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Step 3 Signal processing is applied for preprocessing and feature extraction.

First, recorded signal is preprocessed to reduce noise and make the fea-

tures clear for detection. Next, the feature components related to the

certain task are extracted since the signal is mixed with components

associated with various brain activities.

Step 4 The task performed by the user is estimated by recognizing the ex-

tracted features. The classification algorithms with machine learning

including linear discriminant analysis (LDA), support vector machine

(SVM), artificial neural network (ANN) are widely used.

Step 5 The estimated task are translated into a command entry or feedback.

The command entry can be used to operate a machine, and the feedback

can be used for rehabilitation.

2.2 Measuring brain activities

2.2.1 Invasive methods

Methods for measuring brain activities for BMI can be coarsely classified as

invasive and noninvasive. Invasive ways of measuring of measuring brain

activities for the BMIs include Electrocorticogram (ECoG), electrosubcorticogram

(ESCoG), and electroventriculogram (EVG) They require surgeries to install

electrodes on a cortex or a cerebral ventricle and measure brain activities.

Invasive ways can measure the brain activities with much less noise than

noninvasive ways, whereas, they have the risks generated by permanent sur-

gically implanted devices in the brain.
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2.2.2 Noninvasive methods

Noninvasive ways are such as electroencephalography (EEG), magnetoen-

cephalography (MEG), near-infrared spectroscopy (NIRS), and functional mag-

netic resonance imaging (fMRI) [10]. Each technique and their pros and cons

are described below.

Electroencephalography

EEG is a technique which measures brain activities with electrodes. The

electrical activity which can be observed by an electrode is the summation

of activities of the group of neurons near the electrode. The measurement

method which locates the electrodes on a scalp, which means it is nonin-

vasive, is called scalp EEG. Compared to invasive methods, scalp EEG has

relatively low SNR. In the remaining of the thesis, we call the scalp EEG sim-

ply EEG unless otherwise specified. The equipment of EEG is more compact

compared to other systems such as MEG and fMRI. In addition, its temporal

resolution is also higher than them, however, its spatial resolution is lower

because of the size of the electrodes

Magnetoencephalography

MEG is an imaging technique which employs superconducting quantum in-

terference device (SQUID). SQUID measures magnetic field generated by

electrical currents occurring naturally in the brain. It has high temporal and

spatial resolution, although it also has disadvantages such as its high cost

and large equipment size.

Near-infrared spectroscopy

NIRS uses the near-infrared spectrum which passes through a scalp and a

skull and reaches the inside. It measures the reflected light and the change
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of amount of oxyhemoglobin and deoxyhemoglobin, which are reflected by

the exchange of oxygen in the brain. Since the hemodynamic response is

relatively slow, its temporal resolution is limited.

Functional magnetic resonance imaging

FMRI is a technique which uses magnetic resonance imaging to measure

brain activities. When neuron activates in one area of the brain, blood flow

increases and oxygen is consumed there. FMRI measures brain activities by

detecting associated changes in the blood flow. It has a high spatial resolution

and can capture activities from deep parts of the brain, whereas its tempo-

ral resolution is low since the changes of blood flow is slower than neuron

activations.

Summary

It is considered that the EEG is most practical for BMI applications since it

has high temporal resolution and ease of use, moreover, its hardware cost is

relatively lower than other techniques [10]. Although the EEG signal has a

small amplitude in the range of microvolts and its signal-to-noise ratio (SNR)

is low because of environmental noise, biological noise, and artifacts [11].

Necessarily, proper signal processing is required to extract useful features

contained in the EEG [51].

2.3 EEG-based BMI

In terms of the use for the BMIs, widely-used features which appear in the

EEG can be divide into two types of exogenous and endogenous ones. Ex-

ogenous responses include event-related potentials (ERPs) evoked by sen-

sory events such as visual, auditory, and somatosensory stimuli [12, 13, 14,
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15]. These are also known as visual evoked potentials (VEPs) [16], audi-

tory evoked potentials (AEPs) [17], and somatosensory evoked potentials

(SSEPs) [15] depending on the type of the associated sense. AEPs elicited

with rapid auditory stimuli is called auditory steady state responses (ASSRs)

[14, 19], and VEPs elicited with rapid visual stimuli is called steady state

visual evoked potentials (SSVEPs) [18, 19]. Endogenous responses include

ERPs evoked by cognitive or motor events, and event-related (de)synchronization

(ERD/ERS) also evoked by cognitive or motor events. Cognitive events are,

e.g., ones related to attention, memory, and language. Motor events are,

e.g., ones related to preparation or imagery of movement [22, 23, 24]. Com-

pared to BMIs based on endogenous responses, BMIs based on exogenous

responses require less training of a user [25, 19].

2.4 Synchronous/Asynchronous BMI

The operations of the BMIs are required to be asynchronous in a practical use

[40, 41, 42]. However, a very limited number of works on asynchronous BMIs

have been reported [43, 44, 41, 45, 46]. Most of the current BMIs are syn-

chronous, as the timing of a command entry is often indicated by some cues

and is controlled by the BMIs, and operations are executed in a certain time

interval. In other words, synchronous BMIs attempt to interpret all signals

which a brain constantly generates as a user intent. The issue is often re-

ferred to as “Midas touch problem” [3, 52]. However, in a real environment,

the user does not intend to enter commands for a certain period. In other

words, a practical BMI should be asynchronous [40, 41, 42]. Such a BMI is

known as an asynchronous or a self-paced BMI, which enables users to en-

ter commands only when they intend to do so. To implement asynchronous

BMIs, a state when the user does not intend to enter commands needs to be

considered. Such a state is typically called a non-control (NC) or idle state,
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while a state when the user actually intends to enter commands is called an

intentional control (IC) or work state [53, 42, 54]. Thus, a key issue to imple-

ment asynchronous BMIs is to establish an efficient decoder for identifying

not only the states (NC/IC) but also the command.
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Chapter 3

Comparison Between BMI and Eye

Tracking Interface

BMI based on visual stimuli detects the target on a screen on which a user

is focusing. The detection of the gazing target can be achieved by track-

ing gaze positions with a video camera, which is called eye tracking or eye

tracking interfaces (ETIs). Both types of interfaces have been developed in

different communities. Thus, little work on the comprehensive compari-

son between these two types of interfaces has been reported. In our study,

we quantitatively compare the performance of these two interfaces on the

same experimental platform. Specifically, our study is focused on two major

paradigms of BMI and ETI: steady-state visual evoked potential-based BMIs

and dwelling-based ETIs. Recognition accuracy and the information transfer

rate were measured by giving subjects the task of selecting one of four tar-

gets by gazing at it. The targets were displayed in three different sizes (with

sides 20, 40, and 60 mm long) to evaluate performance with respect to the

target size. The experimental results showed that the BMI was comparable

to the ETI in terms of accuracy and the information transfer rate. In particu-

lar, when the size of a target was relatively small, the BMI had significantly

better performance than the ETI. The results on which of the two interfaces

work better in different situations would not only enable us to improve the
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design of the interfaces but would also allow for the appropriate choice of in-

terface based on the situation. Specifically, one can choose an interface based

on the size of the screen that displays the targets.

3.1 Introduction

A typical way of achieving command input with SSVEP-based BMI is as fol-

lows. First, multiple visual stimuli whose flickering frequencies differ from

one another are shown on a screen to the user. Each visual stimulus corre-

sponds to each command. Next, the user gazes at one of the visual stimuli

that corresponds to his or her desired command. Then, with proper signal

processing, the BMI recognizes which stimulus the user is gazing at, that

is, which command the user would like to input. For the visual stimulus,

a variety of visual reversal patterns, such as square box and checkerboard

patterns, are used [55]. Flickering stimuli can be strenuous, causing visual

fatigue; there is also a risk of triggering epileptic seizures in certain people

[33, 56].

Conversely, the target on a screen at which the user gazes can also be

measured by tracking the point of the gaze, that is, where the user is look-

ing. The technique that tracks the point of the gaze is called eye tracking,

and interfaces that allow command input using eye tracking are often called

eye tracking interfaces (ETIs) [27, 28, 29, 30]. They are considered to be fairly

robust [35] and promising components of user interfaces [57] because of their

inherent advantages, such as their speed and ease of use [35]. ETIs allow for

performing actions or selections as well as pointing on a screen. Methods that

enable command input include selecting a target by gazing or dwelling for

more than a fixed time [35], using a physical button [35], blinking or winking,

making gestures with the gaze [58], or using eye movements with manual
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pointing, which is called manual and gaze input cascaded (MAGIC) point-

ing [59]. Among them, inputting a command by gazing at a target for more

than predefined time—known as dwelling—is one of the most straightfor-

ward and commonly used methods [31], and it does not require any physical

movement of the limbs. In most cases, it is easy to mount an eye tracking

device called an eye tracker. However, it requires the user to calibrate the

device prior to use. A little movement of the eye position can deteriorate

the performance that necessitates recalibration. In addition, targets need to

be a certain size to compensate for inaccuracies in the estimation of the gaze

coordinates [60].

Both BMI and ETI are user interfaces that utilize visual perception. Eval-

uations of both interfaces have been widely reported in their own research

communities [32, 33], and it is acknowledged that both can accomplish high

precision in terms of recognition accuracy [34, 35]. A previous study on a

SSVEP-based BMI implemented as a speller [61] claimed that its typing speed

up to 12 words per minute was comparable to the reported typing speed of

typical ETIs, typically from 5 to 10 words per minute [62]. Another study in-

vestigated and compared a participant’s performance and feedback using an

auditory ERP-based BMI, an ETI, and electrooculography [63]. The partici-

pant rated the BMI as the easiest to use and the ETI as the least tiring, while

another comparison study on a visual ERP-based BMI and an ETI reported

that the ETI was superior to the BMI in terms of their performances and us-

ability [64]. Meanwhile, the preliminary work of the authors compared the

performances of a SSVEP-based BMI and a dwelling-based ETI by investi-

gating recognition accuracies and information transfer rates (ITRs) [65] in

which subjects were asked to gaze at one of four targets on a screen [66].

The experimental results showed that the BMI was comparable in ITR to the

ETI and had better performance for the relatively small targets on the screen.

However, the preliminary work included a small number of subjects without
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statistical validation. Thus, the purpose of our study is to investigate and

compare the performances of the SSVEP-based BMI and the dwelling-based

ETI in detail, employing more subjects and more detailed statistical analyses.

As mentioned above, these interfaces have been evaluated in their own re-

search communities regarding accuracy, ITR, usability, and so on. To avoid

broadening the issue too much, the present study is focused on investigating

performance, including recognition accuracy and ITRs, not usability, includ-

ing visual fatigues and workloads. Their performances were evaluated with

respect to the size of the targets and the time to analyze a command, that is,

the time window length of EEG analysis in the BMI and the dwell time in the

ETI.

3.2 Methods

3.2.1 Subjects

Ten subjects (two females, age range = 22–27, mean age = 23.4 ± 1.6) par-

ticipated in the experiment. All subjects were healthy and had normal or

corrected-to-normal vision. They were given an informed consent form, and

the study was approved by the Research Ethics Committee of Tokyo Univer-

sity of Agriculture and Technology.

3.2.2 Experimental settings

BMI

We used Ag/AgCl active electrodes manufactured by Guger Technologies

(g.tec), namely, g.LADYbird, g.LADYbirdGND (for GND), and g.GAMMAearclip

(for reference, earclip type) to record EEG data. These were driven by a

g.GAMMAbox (g.tec) power supply unit. As illustrated in figure 3.1, four

electrodes were located at Pz, Oz, O1, and O2 following the international
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A1

Pz

Oz
O2O1

AFz

FIGURE 3.1: Electrode positions.

10–20 system covering the occipital region. The electrodes for GND and the

reference were placed on AFz and A1, respectively. The EEG signals were

amplified by MEG-6116 (Nihon Kohden), which applied lowpass and high-

pass analog filters for each channel. The cutoff frequencies of the lowpass

and highpass filters were set to 100 Hz and 0.5 Hz, respectively. The signals

were sampled by an A/D converter (AIO-163202F-PE, Contec) with a sam-

pling rate of 1200 Hz and recorded and downsampled to 240 Hz with Data

Acquisition Toolbox of the MATLAB (MathWorks).

ETI

EyeFrame SceneCamera System (Arrington Research) was used as an eye

tracker, which can be worn as frames of glasses. The system has an approx-

imate measurement of accuracy of 0.25–1.0 degree of visual angle [67]. The

dark pupil method [68] was used to determine the position of the pupil. With

this method, an infrared light source was placed in front of the eye, and it
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FIGURE 3.2:
Subject using a

chin rest.

FIGURE 3.3:
Experimental

circumstance.

made the iris appear light, with the pupil being the darkest region in the im-

age. Calibration was performed using Auto-Calibration of ViewPoint Eye-

Tracker (Arrington Research), which was required to map the coordinates as

the point of gaze on the screen. During calibration, the subjects were asked

to fixate on a 3 × 3 grid of points that were displayed one at a time in ran-

dom order. After calibration, the xy coordinates of the user’s gaze point were

smoothed by averaging previous four samples and recorded using MATLAB

(MathWorks) with a sampling rate of 60 Hz. Throughout the experiment, the

subjects’ heads were fixed using a chin rest. Figure 3.2 shows a subject using

the chin rest during an experiment. A MATLAB Psychtoolbox was used to

plot a black dot with a diameter of 2 mm as the feedback of the subject’s gaze

point, as depicted in figure 3.4b. Figure 3.3 shows the circumstance of the

experiment.
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TABLE 3.1: Flickering frequencies corresponding to visual tar-
gets on the screen, which were assigned to BMI commands.

Target Tk Location Frequencyfk

T1 Top 9.2 Hz
T2 Right 10.9 Hz
T3 Bottom 12.0 Hz
T4 Left 13.3 Hz

(A) BMI (B) ETI

FIGURE 3.4: Displayed targets. The black dot shown in (b) rep-
resents the gaze point of a user. Through the experiments, three
different sizes (d = 20, 40, and 60 mm) per side were used for

comparison.

3.2.3 Design

The targets shown in figure 3.4 were drawn with Psychtoolbox on a display

screen. For the BMI experiment, we used a desktop computer connected to a

23-inch display with a resolution of 1920 × 1080 and a refresh rate of 120 Hz.

As depicted in figure 3.4a, the targets in the BMI experiment were square

checkerboards that reversed pattern according to the frequencies listed in

table 3.1. The length of one side of each small square of the checkerboards

was 4 mm (visual angle of 0.32 deg). For the ETI experiment, we used a
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FIGURE 3.5: Schematic depiction of time course in one trial and
an image of the displayed targets.

laptop computer connected to a 15.6-inch display with a resolution of 1366 ×

768 and a refresh rate of 60 Hz. As can be seen in figure 3.4b, the targets in the

ETI experiment were drawn in green so that they did not match up with the

colors of the background or the gaze-point which were drawn in gray and

black, respectively. In both experiments, subjects sat on a comfortable chair

in front of the display 70 cm away, and the display was set at a height they

could look straight.

As illustrated in figure 3.4, four square targets were displayed on the top,

bottom, right, and left on the screen. The targets were referred to as Tk in

clockwise order from the top; thus, a target on top was T1 and a target on the

left was T4, as shown in table 3.1. The three different target sizes employed in

the experiments were 20, 40, and 60 mm on a side, which can be converted to

visual angles of 1.6, 3.3, and 4.9 deg. The distance between the center of the

targets and each target was the same as the target size, In other words, the

distances between two adjacent targets was proportional to the target size.
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As depicted in figure 3.4, an arrow was also displayed in the center of the

targets to dictate which target the subject should gaze at.

3.2.4 Task

Each trial consisted of one second of an instructing period and two seconds

of a gazing period, as depicted in figure 3.5. The instructing period (e.g.,

the interval of a1–b1 in figure 3.5) started with a beep sound for a duration

of 0.1 seconds. During the instructing period, the arrow was presented to

instruct the subjects in terms of which target to gaze at. After that, the gazing

period (e.g., the interval of b1–c1 in figure 3.5) started with the disappearance

of the arrow. The subjects fixated on the arrow during the instructing period,

and following the disappearance of the arrow, they started to gaze at the

target. The instructions corresponding to the targets were given equally and

randomly.

As described before, three different target sizes (d = 20, 40, and 60 mm)

were used for comparison. For each target size, four sessions consisting of

five successive trials were executed. Therefore, twenty trials were executed

for each target size, and one command was determined per trial. After each

session, the task was temporary halted concerning the burden of the subjects’

eyes. It was restarted when the subjects were ready and pressed the space

bar.

As depicted in figure 3.5, in the BMI experiment, visual stimuli did not

flicker during the instructing period, but flickered during the gazing period.

Moreover, in the ETI experiment, calibration was performed before the ex-

periment and after each of the four sessions because the subjects’ heads or

the eye tracker they wore could easily move out of position, which had a

major effect on mapping the gaze point on the screen.
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3.2.5 Target detection methods

The recordings (the EEG signals for the BMI and the gaze positions for the

ETI) during the gazing period (the interval of b–c in figure 3.6) were analyzed

offline, and entered commands were determined.

BMI

To detect commands, the EEG for W seconds during the gazing period was

analyzed. Samples just after the visual stimuli started flicker were neglected

and considered as a delay of SSVEP onset [69], as described later.

We employed a method called filter bank canonical correlation analysis

(FBCCA), which was recently proposed by Chen et al. [70] for detecting the

stimulus frequency without any calibration. The calibration-free method was

employed despite the fact that methods that utilize calibration data have re-

cently been gaining attention [71, 72, 73, 74, 75], since those methods some-

times take much more time for calibration than the ETI. FBCCA is an exten-

sion of the standard canonical correlation analysis (CCA) method [76], which

finds the target frequency that maximizes the canonical correlation between

the observed multichannel EEG and a vector consisting of simulated sinu-

soidal waves. More specifically, let x(t) ∈ RM be an M -channel EEG signal

and y(t) ∈ R2·H consists of Fourier basis functions of simulated stimulus sig-

nals, which are ideal SSVEP with frequency f given as

yf (t) =



sin(2πft)

cos(2πft)

...

sin(2Hπft)

cos(2Hπft)


, (3.1)
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where H is the number of harmonics in the Fourier basis functions. To de-

tect the frequencies of the SSVEP components contained in the EEG for the

SSVEP-based BMI systems, a canonical correlation ρf between x(t) and yf (t)

is calculated as follows:

ρf = max
wx,wyf

wT
xE[x(t)yT

f (t)]wyf√
wT

xE[x(t)xT (t)]wxwT
yf
E[yf (t)yT

f (t)]wyf

, (3.2)

which is calculated for all the frequencies of flickering targets. Thus the gaz-

ing target is identified by the frequency that gives the largest canonical cor-

relation among the possible frequencies.

In the FBCCA, the observed EEG is decomposed into J subbands by a

filter bank, and for the j-th (j = 1, . . . , J) subband EEG signal, xj(t), the

canonical correlation with the reference signal, yfk(t), with the frequency of

the k-th target, denoted by ρk,j , is calculated. Once the canonical correlation

ρk,j is calculated, the feature for fk is defines as a weighted sum of squares of

the correlation as follows:

ρ̃k =
J∑

j=1

w(j) · ρ2k,j, (3.3)

where the weight vector with respect to ρk,j corresponding to subband com-

ponents is suggested [70] to be

w(j) = j−a + b, j ∈ [1, J ], (3.4)

where a and b are constants. Thus, the frequency f ⋆ corresponding to k⋆ that

maximizes ρ̃k is detected as the stimulus frequency:

f ⋆ = fk⋆ , (3.5)
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TABLE 3.2: Subbands of the designed filter bank.

Subbandj Passband [Hz]

SB1 [ 9.2 66.5]
SB2 [18.4 66.5]
SB3 [27.6 66.5]
SB4 [36.8 66.5]
SB5 [46.0 66.5]

where

k⋆ = arg max
k

ρ̃k. (3.6)

In this chapter, the number of harmonics was set as H = 5. In additions,

the subbands were designed so that they cover multiple harmonic frequency

bands with individual low-cut and high-cut frequencies, as listed in table 3.2.

As shown in table 3.2, the number of subbands was set as J = 5 empirically.

See [70] for details on the filter bank design. Empirically, the constants in

(3.4) were set as a = 2 and b = 1.

ETI

The operation of the dwelling-based ETI is typically self-paced, and a user

can avoid involuntary command entry by simply looking away from a tar-

get before exceeding the dwell time, in other words, there is no input at times

[77, 78, 31]. Conversely, the SSVEP-based BMI employed in the present study

detects commands synchronously, and there would be some sort of input in-

variably after an analysis for target detection, as in most of the SSVEP-based

BMI [34, 79, 61]. To fairly compare their performances, the entered com-

mands were determined in two ways: 1) direct target selection (ETI-target)

and 2) nearest target selection (ETI-nearest). The details of these analyses are

described below.

ETI-target The target was detected as a command when the gaze point was

dwelled on it directly for more than the dwell time D [sec]. If the gaze
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point was outside of the target, the dwell timer was reset. In the case

where the gaze point was not dwelled on any target for more than D

[sec], the detection was regarded as a failure, and no command was

detected. Thus, the detected result could be one of the four commands

or no input.

ETI-nearest In the case where the gaze point did not satisfy the dwell time

during the gazing period in accordance with the ETI-target approach,

the target was determined based on the count of the nearest target of the

gaze points during the gazing period. Thus, the detected result could

be one of the four commands.

In terms of a four-command user interface, the ETI-nearest is more practical

than the ETI-target achieving higher accuracy. However, it should be em-

phasized that, as the number of commands increase, the size of the targets

becomes smaller and the targets are more densely located on the screen. In

such a case, the ETI-nearest is less practical, as it is necessary for users to gaze

directly at the target.

3.2.6 Performance criteria

To evaluate performance, the recognition accuracy and the ITR in bits/min

[2] were calculated:

ITR =
60

U

[
log2K + P log2 P + (1− P ) log2

1− P

K − 1

]
, (3.7)

where U is the mean time in seconds to input one command, K is the number

of selectable commands (K = 4), and P is the recognition accuracy, that is,

the probability that the detected commands match the instructed commands.

Furthermore, the simulated online performance was also investigated to

evaluate the estimated performance in online use. It should be noted that
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FIGURE 3.6: An example of the procedure for inputting a com-
mand. For the ETI (i.e., the lower part of the picture), a closed
circle represents the second that the gaze point lands on the tar-
get, while an open circle represents the second it is off the target

(a, b, and c correspond to those in figure 3.5).

the offline recognition accuracy was equal to the simulated online one since

the same recorded data were analyzed for the evaluation of both the offline

and the simulated online performance. In this chapter, the estimated ITR in

online use considering the expected time to shift the gaze was defined as the

simulated online ITR, while the ITR that was calculated considering the actual

time required to input the commands, including breaks (the instructing pe-

riods), was defined as the offline ITR. The definition of U in (3.7) was altered

with respect to the offline and the simulated online ITR individually, as de-

scribed below. The simulated online ITR was estimated only for the analysis

time, which led to the highest performance in the offline evaluation.

BMI

The ITR of the BMI was calculated with respect to two independent variables,

the size of targets (d [mm]) and the time to analyze a command, that is, the

data length of EEG signal analysis (W [sec]). To calculate the offline ITR, U

in (3.7) was defined as follows:

Uoff
BMI = I + L+W, (3.8)
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where I [sec] is the instructing period and L [sec] is the time lag (the delay)

of SSVEP onset, as illustrated in figure 3.6. We set I = 1.0 sec, L = 0.1 sec,

and W = 0.5, 0.6, . . . , 1.8, 1.9 sec.

Additionally, to calculate the simulated online ITR, U in (3.7) was defined

as follows:

Uon
BMI = G+W, (3.9)

where G [sec] is the time for shifting the gaze from one target to another, as

illustrated in figure 3.6. In the definition of U for calculating the simulated

online ITR, the time lag of SSVEP onset L was removed, since it does not

affect online use. We set G = 0.5 sec according to the previous studies [80,

61].

ETI

The ITRs of the ETI-target and the ETI-nearest were also calculated with re-

spect to two independent variables, the size of targets (d [mm]) and the time

to analyze a command, i.e., the dwell time (D [sec]). To calculate the offline

ITR, U in (3.7) was defined as follows:

Uoff
ETI = I + T +D, (3.10)

where I [sec] is the instructing period and T is as follows:

T =
1

N

N∑
i=1

Ti, (3.11)

where Ti [sec] is the duration from the start of the gazing period to the time

when the gaze point lands on a target, and N is the number of trials for each

size. We set I = 1.0 sec, D = 0.5, 0.6, . . . , 1.8, 1.9 sec, and N = 20.
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Additionally, to calculate the simulated online ITR, U in (3.7) was defined

as follows:

Uon
ETI = G+ Z, (3.12)

where G [sec] is the time for shifting the gaze from one target to another, and

Z is as follows:

Z =
1

N

N∑
i=1

Zi, (3.13)

where Zi (≥ D) [sec] is the duration from the time when the gaze point first

lands on the target to the time when a command is input, as illustrated in

figure 3.6. The duration Zi is dependent on the dwell time D and the subjects’

performance. We set G = 0.5 sec.

Remarks on time window and dwell time

As described above, the shortest analysis time, the time window W , and the

dwell time D were set as 0.5 sec; however, they could be shorter than 0.5 sec

in the offline analysis. We did not consider such a short time here, since in

practical interfaces, a very short interval for command inputs might cause an

undesired repeat of the same command, such as a press-and-hold buttons or

keys. Likewise, in the community of ETIs, it is called a Midas touch problem,

which causes unintentional inputs using a very short dwell time; that is, ev-

ery target a user looks at will be selected regardless of whether it is voluntary

or not [81]. The shortest analysis time, 0.5 sec, was set following the default

duration until a press turns into a long press in Android [82].

3.2.7 Statistical analysis

The statistical analyses, including an analysis of variance (ANOVA), a re-

gression analysis, and a Wilcoxon signed-rank test, were conducted on the

experimental results. A two-way between subjects ANOVA was performed
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to compare the effect of the target size and the analysis time on the offline ITR

for each BMI, ETI-target, and ETI-nearest. A multiple linear regression anal-

ysis was also performed to study how the independent variables (i.e., the tar-

get size and the analysis time) were related to the offline ITR. Lastly, paired-

sample, one-sided Wilcoxon signed-rank tests were performed to compare

the best performance of the BMI with that of the ETI-target and the ETI-

nearest. The compared performance included the accuracy, the offline ITR,

and the simulated online ITR.

3.3 Results

3.3.1 Experimental results

Recognition accuracy

Figures 3.7, 3.8, and 3.9 show the box plots of the distributions of the recog-

nition accuracy of the BMI, the ETI-target, and the ETI-nearest, respectively.

The horizontal axis shows the command analysis time (i.e., the time window

W for the BMI and the dwell time D for the ETI), and the vertical axis shows

the accuracy. Moreover, (a), (b), and (c) in the figures show the results when

the target sizes were 20 mm, 40 mm, and 60 mm, respectively. The band

inside the box represents the median.

Figures 3.7, 3.8, and 3.9 illustrate that, in terms of the target size, the larger

target (d = 60 mm) showed higher accuracy than the smaller one (d = 20

mm) for both the BMI and the ETI. Another aspect is the analysis time (i.e.,

the time window for the BMI and the dwell time for the ETI). It can be seen

from these figures that inappropriate analysis times yielded low accuracy.

However, it is worth noting that the behavior of accuracy, as it relates to the

analysis time, was completely different for each interface, as seen in figures

3.7, 3.8, and 3.9. The BMI showed higher accuracy when the time window
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was longer, while the ETI-target showed higher accuracy with the shorter

dwell time. The accuracy of ETI-nearest barely changed with respect to the

dwell time.

In summary, the BMI had the highest mean accuracy with the long time

window (W = 1.9 sec) and the largest target (d = 60 mm) (see figure 3.7c),

and the ETI-target and the ETI-nearest had the highest mean accuracy with

the shortest dwell time (D = 0.5 sec) and the largest target (d = 60 mm)

(see figures 3.8c and 3.9c). The recognition accuracy with each target size

is summarized in table 3.3. As shown in table 3.3, the mean and median

accuracy of the BMI were higher than those of the ETI-target with all the

target sizes, especially with the smallest target (d = 20 mm), in which the

mean accuracy of the BMI achieved 72.0%, which is much higher than the

highest mean accuracy of the ETI-target, 38.0%. Conversely, the ETI-nearest

performed better than the BMI with the target size d = 20 and 40 mm, while

the BMI achieved higher accuracy with the largest target (d = 60 mm). The

statistical comparisons are described in section 3.3.2.
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FIGURE 3.7: Box plots of the accuracy of the BMI.
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FIGURE 3.8: Box plots of the accuracy of the ETI-target.
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FIGURE 3.9: Box plots of the accuracy of the ETI-nearest.
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ITR

Figures 3.10, 3.11, and 3.12 show the box plots of the distributions of the

offline ITR of the BMI, the ETI-target, and the ETI-nearest, respectively. The

horizontal axis shows the command analysis time (i.e., the time window W

for the BMI and the dwell time D for the ETI), and the vertical axis shows the

offline ITR. Moreover, (a), (b), and (c) in figures 3.10, 3.11, and 3.12 show the

results when the target sizes were 20, 40, and 60 mm, respectively.

Figures 3.10, 3.11, and 3.12 illustrate that, in terms of the target size, the

larger target (d = 60 mm) led to higher ITR than the smaller one (d = 20 mm)

for both the BMI and the ETI. These results were similar to the behavior of

the recognition accuracy described above. The ETI-target and the ETI-nearest

tended to have lower offline ITR when the dwell time was longer, as seen in

figures 3.11 and 3.12. By contrast, it seemed that the BMI tended to have

higher offline ITR when the time window was longer; however, it reached its

peak at some point, as can be seen in figure 3.10.

In summary, the BMI had the highest mean offline ITR with the time win-

dow W = 1.2 sec and the largest target (d = 60 mm) (see figure 3.10c), and

the ETI-target and the ETI-nearest had the highest mean offline ITR with the

shortest dwell time (D = 0.5 sec) and the largest target (d = 60 mm) (see fig-

ures 3.11c and 3.12c). The offline ITRs with each target size are summarized

in table 3.4. As shown in table 3.4, the mean and median offline ITR of the

BMI were higher than those of the ETI-target using the smallest target (d = 20

mm). By contrast, the ETI-target showed better performance when using the

medium and largest targets (d = 40 and 60 mm). The ETI-nearest achieved

the highest offline ITR of the three regardless of the target size. The statistical

comparisons are described in section 3.3.2.

For the analysis times that led to the highest mean ITR for the BMI, the

ETI-target, or the ETI-nearest, the simulated online ITR was also estimated,
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as described in section 3.2.6. The simulated online ITRs with each target size

are summarized in table 3.5. By the definition of U in (3.7), the simulated

online ITRs were generally higher than the offline ITRs. As in the offline

ITR, the mean and median simulated online ITRs of the BMI were higher

than those of the ETI-target using the smallest target (d = 20 mm). By con-

trast, the ETI-target showed better performance when using the medium and

the largest targets (d = 40 and 60 mm), and the difference was much greater

than that in the offline evaluation. Moreover, the simulated online ITR of the

ETI-nearest was the highest of the three regardless of the target size. The sta-

tistical comparisons on the simulated online ITR are also described in section

3.3.2.
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FIGURE 3.10: Box plots of the offline ITR of the BMI.
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FIGURE 3.11: Box plots of the offline ITR of the ETI-target.
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FIGURE 3.12: Box plots of the offline ITR of the ETI-nearest.
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3.3.2 Statistical verifications

ANOVA and regression analysis

First, we describe the results of the ANOVA on the offline ITR of the BMI.

There was a significant main effect of target size, F (2, 405) = 124.38, p <

0.001; also, there was a significant main effect of analysis time, that is, the

time window length of EEG analysis, F (14, 405) = 11.45, p < 0.001. Mean-

while, there was no significant interaction of the target size and the analysis

time, F (28, 405) = 0.49, p = 0.987. These results suggest that the target size

and the analysis time do have an effect on the offline ITR of the BMI.

A multiple linear regression analysis was also performed to study how

those independent variables (i.e., target size and analysis time) related to the

offline ITR of the BMI. Here, we considered the model using target size d and

analysis time (time window) W as explanatory variables given as:

ITRBMI = α + β1 · d+ β2 ·W. (3.14)

Fitting the model above, we obtained:

ITRBMI = −16.11 + 6.60d+ 13.89W, (3.15)

with an adjusted R2 = 0.435. With this equation, it is presumed that the

target size and the time window were positively related to the offline ITR of

the BMI. Summarizing the results of the ANOVA and the regression analysis,

our results suggest that the ITR of BMI is expected to be higher when using

a large target or long time window.

Next, we describe the results of the ANOVA on the offline ITR of the ETI-

target. There was a significant main effect of target size, F (2, 405) = 43.34,

p < 0.001; in addition, there was a significant main effect of analysis time,

that is, the dwell time, F (14, 405) = 14.85, p < 0.001. In addition, there
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was a significant interaction between the target size and the analysis time,

F (28, 405) = 3.18, p < 0.001. These results suggest that the target size, the

analysis time, and the interaction of these factors do have an effect on the

offline ITR of the ETI-target. The difference between the results of the ETI-

target and the BMI was the significance of the interaction of target size and

analysis time.

Again, a multiple linear regression analysis was performed to study how

the target size and the analysis time were related to the offline ITR of the ETI-

target. Here, we considered the model using target size d and analysis time

D as explanatory variables given as:

ITRETI−target = α + β1 · d+ β2 ·D. (3.16)

Fitting the model above, we obtained:

ITRETI−target = 22.65 + 3.65d− 18.40D, (3.17)

with an adjusted R2 = 0.327. With this equation, it is presumed that the target

size was positively related to the offline ITR of the ETI-target, while the dwell

time was negatively related. To summarize the results of the ANOVA and the

regression analysis, our results suggest that the ITR of ETI-target is expected

to be higher when using a large target or short dwell time.

Lastly, we describe the results of the ANOVA on the offline ITR of the ETI-

nearest. There was a significant main effect of target size, F (2, 405) = 123.96,

p < 0.001; also, there was a significant main effect of analysis time, that is, the

dwell time, F (14, 405) = 4.23, p < 0.001. In addition, there was no significant

interaction between the target size and the analysis time, F (28, 405) = 0.46,

p = 0.993. These results suggest that the target size and the analysis time do

have an effect on the offline ITR of the ETI-nearest.
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Again, a multiple linear regression analysis was also performed using

target size d and analysis time D as explanatory variables as follows:

ITRETI−nearest = α + β1 · d+ β2 ·D. (3.18)

Fitting the model above, we obtained:

ITRETI−nearest = 27.35 + 6.14d− 10.05D, (3.19)

with an adjusted R2 = 0.341. With this equation, as in the ETI-target, it is

presumed that target size was positively related to the offline ITR of the ETI-

nearest, while dwell time was negatively related. To summarize the results

of the ANOVA and the regression analysis, our results suggest that the ITR

of ETI-nearest would be higher when using a large target or short dwell time.

Wilcoxon signed-rank test

The results of the Wicoxon tests are summarized in tables 3.3, 3.4, and 3.5.

Only significant results reporting, the BMI showed significantly higher per-

formance in the accuracy, the offline ITR, and the simulated online ITR com-

pared to the ETI-target when using the smallest target (d = 20 mm). In ad-

dition, the accuracy of the BMI was significantly greater than that of the ETI-

target when using the largest target (d = 60 mm). By contrast, when using

the medium target (d = 40 mm), the ETI-nearest had significantly higher

accuracy than the BMI. It also showed significantly higher offline ITR and

simulated online ITR when using the medium and the largest targets (d = 40

and 60 mm).
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3.4 Discussion

A comparison study on the similar design of BMI and eye tracking interfaces

ETI was conducted in this chapter. Specifically, the SSVEP-based BMI and

the dwelling-based ETI were compared. By investigating which interface is

most appropriate under several conditions, the study ultimately aimed to

improve the design of user interfaces. The performances of the SSVEP-BMI

and the dwelling-ETI were evaluated by measuring the recognition accuracy

and the ITR with respect to the target size and the command analysis time,

that is, the time window length of EEG for the BMI and the dwell time for the

ETI. The performance of the ETI was evaluated in two ways: 1) direct target

selection (ETI-target) and 2) nearest target selection (ETI-nearest). Through

the experiment of visual target selection tasks, we proved that the BMI was

comparable to typical ETI (i.e., the ETI-target) in recognition accuracy and

the ITR. Moreover, the ETI-nearest showed much better performance than

the BMI, especially when the targets were large.

3.4.1 Tendencies toward the target size

To design a user interface using human sight, it is beneficial to appreciate

behavior as it relates to target size because there is always limited space for

displaying targets. In the experiment, three different target sizes were used

(i.e., d = 20, 40, and 60 mm) for comparison.

For the BMI, the ETI-target, and the ETI-nearest, the accuracy and the of-

fline ITR increased with a larger target. The decrease of the accuracy of the

ETI-nearest when the target size was smaller may have been caused by the

instruction to the subjects; we asked them to gaze at one of the targets gath-

ered at the center of the display. The smaller the size of the targets, the closer

to one another the targets were. For BMIs, a previous study [83, 84] also in-

dicated that VEP response increased when the stimulus field (i.e., target size)
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was enlarged. For typical ETIs, such as the ETI-target, other studies [35, 57,

85] have also indicated that the time to input each command and error rate

decreases when the target size is enlarged. In addition, a previous study [86]

claimed that accuracy generally increases as the target size expands, and the

appropriate size of the target is dependent on the eye tracking device. Con-

sidering these previous studies, it is likely that the interfaces showed higher

ITR with a larger target because higher accuracy results in higher ITR, ac-

cording to equation (3.7).

3.4.2 Tendencies toward the analysis time

Another aspect of designing a user interface is setting the time to input a

command, which is affected by the command analysis time. In most cases, a

shorter analysis time is preferable, although an inappropriate analysis time

leads to lower accuracy. In this study, the time window lengths of the EEG

signal (i.e., W for the BMI) and the dwell time (i.e., D for the ETI) were set as

W = D = 0.5, 0.6, . . . , 1.8, 1.9 sec.

The BMI tended to have higher accuracy when the time window was

longer. This result concurs with the results of previous studies [76, 72, 70]. It

is worth noting that the accuracy would be saturated at some point in time,

and the ITR would achieve the highest at that point and begin to decrease

after according to equation (3.7). For this reason, the ITR is expected to in-

crease as the time window gets longer; however, it will start to decrease after

the time point when the accuracy is saturated. This tendency of the ITR has

been indicated in previous studies [72, 70]. Contrary to the BMI, the ETI-

target tended to show higher accuracy and ITR when the dwell time was

shorter, while the accuracy of the ETI-nearest barely changed with respect to

the dwell time. Previous works [57, 81] have also claimed that longer dwell

times are less suitable. Meanwhile, another previous study [78] suggested
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that the dwell time should be longer than 0.5 sec for usability, claiming that

the subjects disapproved the 0.5 sec of dwell time as it was too short.

3.4.3 Comparison of the recognition accuracy and the ITR

The BMI showed the best performance with the long time window, while

the ETI showed the best performance with the short dwell time, as described

in section 5.3. In this section, the comparison of the performance with each

analysis time that led to the best performance is discussed. It is worth not-

ing that the eye tracking system and the algorithm for command selection

employed in the present study would be described as research grade, and

products supplied by reliable enterprises would perform better than the ETI

employed in the present study. Figure 3.13 draws a comparison between the

BMI and the ETI in terms of the accuracy, the offline ITR, and the simulated

online ITR achieved with each analysis time.

Recognition accuracy

As shown in table 3.3, the Wilcoxon signed-rank test showed that the BMI

had significantly better performance than the ETI-target in terms of the recog-

nition accuracy when the target sizes were the smallest and the largest (d =

20 and 60 mm). It can also be seen in figure 3.13a that most of the subjects

had better performance using the BMI than using the ETI-target when the

target sizes were the smallest and the largest (d = 20 and 60 mm). Although

there was no significant difference, the BMI also showed better performance

than the ETI-target when the target size was medium (d = 40 mm). It is

equally important to mention that one subject out of ten achieved 100% of

accuracy using the ETI-target with the shortest dwell time (D = 0.5 sec),

even when the target size was the smallest (d = 20 mm). Thus, there are ex-

ceptions, however, the experimental results should generally hold true. This
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result quantitatively suggests, on the whole, that the BMI has an advantage

in terms of the recognition accuracy compared to the ETI-target. It seems

possible that the misclassification of the ETI-target was caused by the offset

error in calibration as well as an inappropriate dwell time. Hence, increasing

the frequency of calibration would increase the accuracy of the ETI-target at

the same level as the BMI. However, the BMI is superior to the ETI-target

in terms of the fact that it does not need calibration. Comparing accuracies

between the BMI and the ETI-nearest, the ETI-nearest achieved significantly

higher accuracy with the medium target (d = 40 mm). We can also see from

figure 3.13d that most of the subjects performed better with the ETI-nearest,

especially when using the medium and the largest targets (d = 40 and 60 mm).

However, as mentioned earlier in section 3.2.5, it should be kept in mind that

the ETI-nearest may not perform as well as it did in the present study, espe-

cially when implementing a large number of commands densely located on

a display. When the targets are located densely, the ETI-nearest could lead to

accidental false entries.

ITR

The important factor for evaluating interfaces is not only the recognition ac-

curacy but also the speed. The ITR allows us to evaluate both the recognition

accuracy and the speed; hence, the ITR is also an important criterion. When

using the smallest target (d = 20 mm), the BMI had significantly higher ITR

than the ETI-target in the offline and the simulated online evaluations, as

described in section 3.3.2. It also appears from figures 3.13b and 3.13c that

most of the subjects had better performance using the BMI than using the

ETI-target when the target size was small (d = 20 mm). Again, one subject

out of ten achieved outstandingly high offline and simulated online ITR at

59.4 bits/min and 98.0 bits/min, respectively, using the ETI-target with the

shortest dwell time (D = 0.5 sec) and the smallest target (d = 20 mm). This
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result suggests that the ETI-target generally needs sufficiently large targets,

and the BMI has an advantage in target size over the ETI-target, even though

the performance might be different depending on the person. Conversely,

when using the medium and the largest targets (d = 40 and 60 mm), the ETI-

target showed better performance than the BMI in terms of the offline and

the simulated online ITR even though there was no significant difference. As

depicted in figures 3.13b and 3.13c, with the medium and the largest targets

(d = 40 and 60 mm), half the subjects or more showed higher ITR using the

ETI-target than using the BMI, and their ITRs using the ETI-target were much

higher than when using the BMI. This result indicates that the ETI-target po-

tentially has better performance than the BMI when the target size is large

enough. Furthermore, the ETI-nearest showed significantly higher offline

and simulated online ITR than the BMI with the medium and the largest tar-

gets (d = 40 and 60 mm). Almost all the subjects achieved higher ITR using

the ETI-nearest than the BMI, as seen in figures 3.13e and 3.13f. It is indicated

that the ETI-nearest would be preferable when the number of the targets is

small or the targets are located sparsely.

3.4.4 Summary

It was observed that the SSVEP-based BMI showed better performance than

the dwelling-based ETI-target (i.e., typical ETI) when the target size was

small. However, the experimental results showed that the ETI-target had

potentially better performance than the BMI when the target size was large

enough. In addition, it was indicated that the ETI-nearest would perform

much better than the BMI when the targets are not located densely on the

display. In the present study, the distance between each target was changed

with the target size. Therefore, the experimental results are applicable when

the screen size is small or large. These results suggest that the selection of
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the SSVEP-based BMI or the dwelling-based ETI depends on the size of the

screen that displays the targets. When a large screen, such as a monitor for

a desktop computer, is available, the dwelling-based ETI is expected to have

high accuracy and high ITR. Otherwise, when using small screens, such as

smartphone or tablet screens, the SSVEP-based BMI would be more appro-

priate than the dwelling-based ETI.
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FIGURE 3.13: Comparisons of the recognition accuracy (13a
and 13d), the offline ITR (13b and 13e), and the simulated online
ITR (13c and 13f) with each analysis time that led to the highest
mean value as listed in tables 3.3, 3.4, and 3.5. Figures 13a, 13b,
and 13c represent comparisons between the BMI and the ETI-
target, and figures 13d, 13e, and 13f represent comparisons be-
tween the BMI and the ETI-nearest. The values of each subject
using the ETI-target or the ETI-nearest are plotted against those
of the same subject using the BMI. The open circles, triangles,
and squares represent the values with each target size, and the
closed circles, triangles, and squares represent the mean values
across the subjects. It is worth noting that the number of plots
seem less than the number of subjects, as some subjects showed
the same performance as the others and the plots overlapped.
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Chapter 4

Calibration Reduction

Among SSVEP-BMIs, a state-of-the-art is the one based on hybrid frequency

and phase coded SSVEP, which needs a large set of calibration data as refer-

ence signals, so-called individual templates. For hybrid frequency and phase

coded SSVEP-BMIs, algorithms utilizing calibration data as reference signals,

so-called individual templates, have recently been reported. The aim of this

study is to propose an approach to calibration reduction by generating from

individual templates corresponding to a part of commands (source templates)

to new templates corresponding to the rest of commands. The new templates

can be obtained by shifting the frequency and phase of the source template

to the desired frequency and phase. In this way, time and cost for calibration

can be greatly reduced. The experimental results suggested that the pro-

posed approach successfully transferred the source template, closely achiev-

ing the performance using the full calibration dataset.

4.1 Introduction

Since SSVEPs are phase-locked periodic with the same or integer multiples of

the frequency of visual stimulus, multiple commands can be implemented on

SSVEP-BMIs by assigning different frequencies and/or phases to each stimu-

lus. The method which assigns both frequencies and phases is called hybrid

frequency and phase coding [87]. In terms of hybrid frequency and phase
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coding, there are two types of strategies: mixed frequency and phase coding and

joint frequency and phase coding. Mixed coding implements Nf × Np visual

stimuli in total by assigning Nf different frequencies with each phase and

Np different phases with each frequency to a visual stimulus [88]. Besides,

joint coding implements Nf visual stimuli in total by assigning Nf different

frequencies to each visual stimulus and assigning different phases to two ad-

jacent stimuli [87, 89]. Both strategies have been gaining attention [37, 26,

90], and it has been reported that both can achieve a high performance with

a large number of commands [87].

Simultaneously with increasing the number of visual stimuli presented

by the hybrid frequency and phase coding, algorithms for recognizing the

frequency and phase of SSVEPs have also been improved [37, 26, 90]. A pre-

vious study on a mixed-coded SSVEP-BMI [37] proposed a method utilizing

a calibration data, which significantly outperformed other canonical correla-

tion analysis (CCA)-based methods. In the method, an average of EEG sig-

nals in a calibration dataset across trials, so-called an individual template or a

training reference signal, is used as a reference signal which efficiently char-

acterizes temporal features of each individual’s SSVEPs. Recently, further

improved algorithms based on the individual templates have been reported

[26, 90]. A major issue which still remains on these algorithms is that they

require a long time for calibration to obtain an acceptable individual tem-

plate. The minimum time for calibration can be estimated as a few seconds

for one trial × the number of trials for each command × the number of commands.

For instance, with the settings in [26], the minimum time for calibration is 8

minutes (1 second for a trial × 12 trials for each command × 40 commands in

total) for calibration without any rest in between sessions. Such a calibration

step can take a lot of time and energy and might cause a visual fatigue before

an actual use. To deal with the problem, Yuan et al. proposed an approach

for joint-coded SSVEP-BMIs exploiting inter-subject information [91]. The
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method exploits the existing calibration data which were recorded before-

hand by multiple users and averages their EEG signals to obtain templates

for a new user, which enabled the new user to achieve a sufficient accuracy

without any calibration. Although the method does not require any calibra-

tion for a new user, it is still necessary to have an access to an enormous

calibration dataset of multiple users recorded in the same situation including

electrode positions, visual stimuli, and so on.

To overcome this issue, we utterly propose a novel approach to calibra-

tion reduction by transferring the individual template of a certain command,

called a source template, to obtain new templates of the other commands,

called target templates. The target templates are generated by shifting the fre-

quency and phase of the source template to the desired frequency and phase.

An experiment with a mixed-coded SSVEP-BMI was conducted to evaluate

performance of the proposed method in terms of the recognition accuracy.

4.2 Materials and Methods

4.2.1 Data Acquisition

Ten males and one female in their twenties took part in our experiment. All

subjects were healthy and had normal or corrected-to-normal vision. They

were given an informed consent, and this study was approved by the re-

search ethics committee of Tokyo University of Agriculture and Technology.

A 23 inch LCD screen (BenQ, XL2411T) with a refresh rate of 120 Hz

was used for displaying visual stimuli. During the experiment, the subjects

seated on a comfortable chair in front of the screen about 60 cm away. In

addition, the subjects ’heads were held steady using a chin rest. Figure 4.1

shows an image of displayed visual stimuli. As depicted in Figure 4.1, six-

teen visual stimuli corresponding to each command were displayed on the
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screen. All stimuli were approximately 5 centimeters on a side and disposed

at equal intervals. Visual stimuli on each row flickered with frequencies of

12, 13, 14, or 15 Hz, respectively, and those on each column flickered with

phases of 0, 90, 180, or 270 degrees, respectively. To present such flickering

stimuli, an approximation approach et al.[92] was employed.

The subjects performed the following task in one trial. They started a trial

by pressing the Enter key. One trial was configured with 1.5 seconds of pre-

flickering interval, 4.0 seconds of flickering time, and 1.5 seconds of post-

flickering interval. In pre-flickering interval, non-flickering visual stimuli

and a white rectangle were displayed. In flickering time, all stimuli started

flickering and the subjects were asked to gaze at the instructed stimulus by

the white rectangle. In post-flickering interval all stimuli stopped flickering.

After each trial, the task was stopped and the subjects were asked to rest their

eyes. The task was restarted when the subjects pressed the Enter key again.

20 trials were performed with respect to each stimulus in a random order.

Thus, each subject performed 320 trials in total.

To record EEG signals, we used Ag/AgCl active electrodes of Guger Tech-

nologies (g.tec) named g.LADYbird, g.LADYbirdGND (for GND), and g.GAMMAearclip

(for reference, ear-clip type) for recording EEG signals. These were driven by

the power supply unit named g.GAMMAbox (g.tec). Twenty five electrodes

in accordance with the 10-5 system [93] were placed at CPz, CP1, CP2, CP3,

CP4, CP5, CP6, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8,

Oz, O1, O2 and Iz. The electrodes for GND and reference were positioned at

AFz and A1, respectively.

4.2.2 SSVEP Recognition Using MCCA

The authors have recently proposed a novel method to recognize mixed-

coded SSVEPs which achieved high performance [90]. The method employs
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FIGURE 4.1: Image of presented visual stimuli that reversed
black/white pattern. Subjects were instructed to gaze at a stim-

ulus framed by a white rectangle.

multiset canonical correlation analysis (MCCA) [47] to obtain a spatial filter

which enhances SSVEP components.

MCCA is a generalization of CCA to multiple datasets [47, 94, 95, 96, 97].

It finds weight vectors that maximize a correlation between weighted linear

combinations of each dataset, called canonical variates. Let Si ∈ RIi×N (i =

1, . . . , Q) be an Ii-channel signal that is normalized to have zero mean and

unit variance. Their linear combinations, canonical variates, are denoted by

wT
i Si, where wi ∈ RIi×1 is a weight vector. With the MAXVAR criterion [47,

95, 96], MCCA solves the following maximization problem to find weight

vectors w = [wT
1 ,w

T
2 , · · · ,wT

Q]
T :

ρ = max
w1,...wQ

Q∑
i ̸=j

wT
i SiS

T
j wj s.t.

1

Q

Q∑
i=1

wT
i SiS

T
i wi = 1. (4.1)

Using a Lagrange multiplier technique, this objective function can be trans-

formed into a generalized eigenvalue problem. The eigenvectors correspond-

ing to the eigenvalues sorted in a descending order and the largest eigen-

value are denoted by w
(1)
i ,w

(2)
i , . . . ,w

(ΣiIi)
i and λ, respectively. The largest

eigenvalue can be interpreted as the similarity of those multiple datasets and
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the eigenvectors corresponding to the large eigenvalues can be interpreted as

the weight vectors that increase the correlation between these datasets.

In accordance with [90], MCCA was applied substituting the EEG signal

of test data x for S1, the artificial reference signal yk for S2, and the individual

template zk for S3, where the subscript, k, describes the index for stimuli. If

the kth stimulus has a frequency of fk, then the artificial signal yk consisted

of Fourier series of simulated stimulus signals given as

yk = [sin(2πfkt), cos(2πfkt), . . . , sin(2Lπfkt), cos(2Lπfkt)]
T , (4.2)

where L is the number of harmonics in the Fourier series, the first two com-

ponents are the sinusoids of the fundamental frequency fk and the others are

harmonics. The number of harmonics was set to L = 3 in the present study.

Additionally, the individual template zk corresponding to the kth stimulus

was obtained by averaging EEG signals in a calibration dataset across trials.

Applying MCCA to these datasets, the largest eigenvalue λk and a spatial fil-

ter wx that was an eigenvector corresponding to the largest eigenvalue were

obtained. With the spatial filter, the test signal x and the individual template

zk were projected. Subsequently, correlation coefficients between these two

projections were obtained as:

ρk = Corr
(
wx

Tx,wx
Tzk

)
, (4.3)

where Corr(·, ·) is the Pearson’s correlation coefficient. The correlation coef-

ficients were computed for each command k (k = 1, . . . , K) following Equa-

tion (4.3). The largest eigenvalue and the correlation coefficient were com-

bined and used for detecting a command as follows:

k⋆ = arg max
k

λksign (ρk) · (ρk)2 . (4.4)
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FIGURE 4.2: Frequency shifting by a bank of bandpass filters
and a bank of bandstop filters. Fourier transforms of the non-
control EEG signal, the source template, and the target template

are denoted by Z(n)(f), Z(s)(f), and Z(t)(f), respectively.

4.2.3 Transferring the Source Template

As described earlier, the individual templates can be obtained by averaging

EEG signals across trials for each command. Necessarily, it requires a long

time for calibration. To overcome this issue, we aimed to transfer the indi-

vidual template of a certain command, named a source template, to obtain a

new template of the other command, named a target template. The source

template can be transferred to the target template by these two following

approaches:

Shifting the phase A source template is shifted in time domain with a time

delay which corresponds to a phase desired to be shifted;
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Shifting the frequency A source template is Fourier transformed into a fre-

quency domain. Subsequently, the peak at a source frequency is shifted

to a target frequency and inverse transformed into a time domain.

Details for these approaches are described below.

Shifting the phase

Let z(s)(t) be a source template given as an average of the recorded EEG sig-

nals as a response to a visual stimulus flickering with a certain frequency f (s)

and a phase ϕ(s). A target template z(t)(t) with the same frequency f (s) as

the source template and a target phase ϕ(t) is obtained by shifting the source

template with a time delay as follows:

z(t)(t) = z(s)(t+ τ), (4.5)

where the time delay τ is defined as τ = ϕ(t)−ϕ(s)

2πf (s) .

Shifting the frequency

The following procedure is based on an assumption that base lines of Fourier

transforms of the source template and the target template share a common

characteristic, and that common characteristic would appear in EEG signals

in non-control state. The EEG signals in non-control state, i.e., when the user

is not gazing at any visual stimulus, would represent a background activity, a

spontaneous activity, an environmental noise, and so forth. Accordingly, the

target template in frequency domain can be ideally obtained by exploiting

non-control EEG signals as a base line and shifting the peaks of the source

template at a source frequency to a target frequency. Figure 4.2 illustrates an

image of the proposed architecture of frequency shifting.

Let Z(s)(f) and Z(n)(f) be Fourier transforms of the source template and

the non-control EEG signal, respectively. Firstly, Fourier transform of the
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source template Z(s)(f) was filtered by a bank of bandpass filters that passes

the harmonics corresponding to the source frequency, f (s), of the source tem-

plate. Specifically, the outputs of the filter bank are denoted by

Z
(s)
1 (f) = Hf (s)(f)Z(s)(f), (4.6)

...

Z
(s)
L (f) = HLf (s)(f)Z(s)(f), (4.7)

where L is the number of harmonics and Hf (f) is the transfer function of a

bandpass filter at the center frequency of f with a bandwidth of 2∆f , defined

as:

Hf (f) =


1, f −∆f ≤ f ≤ f +∆f

0, otherwise

, (4.8)

where ∆f was set to 0.5 Hz in the present study. Secondly, Fourier transform

of the non-control signal Z(n)(f) was filtered by a bank of bandstop filters so

as to exclude bands corresponding to the target frequency f (t) and its har-

monics, and then, previously extracted peaks corresponding to the source

frequency was shifted to a target frequency and added as follows:

Z(t)(f) =
{
Hf (t)(f) +H2f (t)(f) + · · ·+HLf (t)(f)

}
Z(n)(f)

+ Z
(s)
1

(
f −

(
f (t) − f (s)

))
+ Z

(s)
2

(
f −

(
2f (t) − 2f (s)

))
+ · · ·+ Z

(s)
L

(
f −

(
Lf (t) − Lf (s)

))
, (4.9)
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where Hf (f) is the transfer function of a bandstop filter at the center fre-

quency of f with a bandwidth of 2∆f , defined as:

Hf (f) =


0, f −∆f ≤ f ≤ f +∆f

1, otherwise

. (4.10)

Finally, the target template z(t)(t) with the target frequency f (t) and the same

phase ϕ(s) as the source template was obtained by the inverse Fourier trans-

form of Z(t)(f).

Case study for transferring the source template

Consider a set of mixed-coded stimuli consisting of Nf × Np commands in

total, where Nf and Np are the number of different frequencies and phases

that are assigned to each visual stimulus. We assumed the following three

cases:

Phase-shifted template (PST) As source templates, use EEG signals with re-

spect to visual stimuli of Nf different frequencies. PST is obtained by

shifting the phase of each source template.

Frequency-shifted template (FST) As source templates, use EEG signals with

respect to visual stimuli of Np different phases and one phase. PST is

obtained by shifting the frequency of each source template.

Phase-and-frequency-shifted template (PFST) As a source template, use EEG

signals with respect to a visual stimulus of one phase and one phase.

PFST is obtained by shifting both the phase and frequency of the source

template.

In this chapter, the individual templates with the frequency f (s) = 15 Hz

and ϕ(s) = 180 degrees were employed as the source templates to obtain the

PSTs and FSTs, respectively. For the PFSTs, the individual template with the
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TABLE 4.1: Averaged mixed frequency and phase recogni-
tion accuracy (MACC), frequency recognition accuracy (FACC),
phase recognition accuracy (PACC) across the subjects using
the data length of 2.0 seconds. The top three rows show the re-
sults based on the proposed approach, and the lower two row

shows that based on the prior works.

Method MACC [%] FACC [%] PACC [%]

MCCA w/ PST 85.17± 15.04 90.23± 11.39 86.68± 13.33
MCCA w/ FST 80.45± 16.72 89.69± 11.04 83.13± 13.98
MCCA w/ PFST 79.86± 18.38 89.12± 14.21 82.47± 15.00

MCCA w/ IT 91.31± 11.67 94.32± 8.97 92.39± 10.02
CCA 23.04± 2.25 92.81± 9.62 25.00± 0.00

frequency f (s) = 15 Hz and ϕ(s) = 180 degrees was employed as the source

template. The non-control signal was obtained by averaging EEG signals

of pre-flickering interval. Furthermore, the phase was first shifted and the

frequency was shifted next to obtain the PFSTs.

4.3 Results

To evaluate performance, mixed frequency and phase, frequency, and phase

recognition accuracy were measured, respectively. These accuracies using

MCCA with PST, FST, and PFST were compared with the previous works

including MCCA with individual template (IT) [90] and the standard CCA

method [39, 38] for the reference methods. It should be noted that MCCA

with IT need a full calibration, while the standard CCA cannot decode a

phase. The performance of these methods were evaluated based on 4-fold

cross-validation.

Figures 4.3a, 4.3b, and 4.3c show the averaged recognition accuracies of

mixed frequency and phase, frequency only, and phase only. Table 4.1 sum-

marizes the averaged accuracies across the subjects using the data length

of 2.0 seconds. As shown in Figures 4.3a, 4.3b, and 4.3c, MCCA with IT

achieved the highest accuracy compared to the other methods in either case
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of recognizing the mixed frequency and phase, the frequency, and the phase

as expected. Among the proposed approaches, PST achieved a slightly higher

accuracy compared to FST. Remarkably, PFST which required only one source

template also performed well closely achieving to FST and PST as shown in

Table 4.1. Besides, in terms of the frequency recognition, MCCA with PST,

FST, and PFST was inferior to the standard CCA as presented in Figure 4.3b.

However, it is worth noting that MCCA with PST, FST, and PFST can be

applied to the phase recognition and the mixed frequency and phase recog-

nition as well.

4.4 Discussions

The experimental results showed that the proposed transferred template en-

abled to recognize both frequency and phase with a small amount of calibra-

tion closely achieving the performance using the full calibration data. The

difference between the highest accuracies using the transferred templates

and the individual templates was −11.45%, while the minimum time for cal-

ibration could be decreased by 93.75%.

Although mixed-coded SSVEP-BMI was employed to evaluate the pro-

posed transferring approach in this chapter, PFST can be applied to joint-

coded SSVEP-BMIs likewise. This means that this study is potentially appli-

cable to many of existing calibration-based algorithms [26, 37, 98] for recogni-

tion of the frequency and phase of SSVEPs. In the case of applying PFST, the

minimum time for calibration would be reduced by 1/the number of commands

in total, which is an important improvement for a practical use.

As described in Section 6.3, the frequency recognition accuracy using the

proposed approach was slightly lower than that of the standard CCA method

[39]. Hence, further studies might explore how to shift the frequency in a
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more sophisticated manner in order to achieve higher performance. More-

over, an online adaptation of the transferred templates [91] would also im-

prove the performance and help us to establish a more reliable interface.

In conclusion, we proposed an innovative approach to calibration reduc-

tion for hybrid frequency and phase coded SSVEP-BMIs. The present results

suggested the feasibility of the proposed approach to achieve a high perfor-

mance with a small calibration.



66 Chapter 4. Calibration Reduction

0.5 1 1.5 2
0

20

40

60

80

100

Data length [s]

M
ix

ed
 f

re
qu

en
cy

 a
nd

 p
ha

se
 r

ec
og

ni
tio

n 
ac

cu
ra

cy
 [

%
]

 

 

MCCA w/ PST
MCCA w/ FST
MCCA w/ PFST
MCCA w/ IT
CCA

(A)

0.5 1 1.5 2
0

20

40

60

80

100

Data length [s]

Fr
eq

ue
nc

y 
re

co
gn

iti
on

 a
cc

ur
ac

y 
[%

]

 

 

MCCA w/ PST
MCCA w/ FST
MCCA w/ PFST
MCCA w/ IT
CCA

(B)

0.5 1 1.5 2
0

20

40

60

80

100

Data length [s]

Ph
as

e 
re

co
gn

iti
on

 a
cc

ur
ac

y 
[%

]

 

 

MCCA w/ PST
MCCA w/ FST
MCCA w/ PFST
MCCA w/ IT
CCA

(C)

FIGURE 4.3: Averaged recognition accuracies across the sub-
jects of (a) mixed frequency and phase, (b) frequency, and (c)
phase. Blue lines with triangle markers shows the results based
on the proposed approach, and the other two lines shows the

results based on the prior works.
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Chapter 5

Decoding Hybrid-Coded SSVEP

For SSVEP-based BMI, mixed frequency and phase coding which can im-

plement a number of commands and achieve a high information transfer

rate (ITR) has recently been gaining much attention. In order to implement

mixed-coded SSVEP-BMI as a reliable interface, it is important to detect com-

mands fast and accurately. This chapter presents a novel method to recognize

mixed-coded SSVEPs which achieves high performance. The method em-

ploys multiset canonical correlation analysis to obtain spatial filters which

enhance SSVEP components. An experiment with a mixed-coded SSVEP-

BMI was conducted to evaluate performance of the proposed method com-

pared with the previous work. The experimental results showed that the

proposed method achieved significantly higher command recognition accu-

racy and ITR than the state-of-the-art.

5.1 Introduction

SSVEPs are phase-locked periodic with the same or integer multiples of the

frequency of visual stimulus. Thus, frequency coding assigning different fre-

quencies to each stimulus, phase coding assigning different phases to each

stimulus, and mixed frequency and phase coding can be implemented on

SSVEP-based BMIs [88].
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Recently, a method of detecting mixed-coded SSVEPs has been proposed

[37]. The method employed canonical correlation analysis (CCA)[38, 39] uti-

lizing a training set, and enabled increasing a number of commands, improv-

ing a recognition accuracy, and boosting an information transfer rate (ITR)

[2]. However, this CCA-based method requires to solve a generalized eigen-

value problem several times to obtain multiple spatial filters which enhance

SSVEP components.

In this chapter, we propose to employ multiset canonical correlation anal-

ysis (MCCA) [47] for detecting mixed coded SSVEPs in order to simplify the

CCA-based method [37]. Since MCCA enables us to evaluate a relationship

between multiple datasets simultaneously, the proposed method requires to

solve the generalized eigenvalue problem just once in order to obtain spatial

filters. An experiment was conducted to evaluate performance of the pro-

posed method in terms of the recognition accuracy and the ITR.

5.2 Materials and Methods

5.2.1 Data Acquisition

Ten males and one female in their twenties took part in our experiment. All

subjects were healthy and had normal or corrected-to-normal vision. They

were given an informed consent, and this study was approved by the re-

search ethics committee of Tokyo University of Agriculture and Technology.

A 23 inch LCD screen (BenQ, XL2411T) with a resolution of 1,920 × 1,080

and a refresh rate of 120 Hz was used for displaying visual stimuli. Dur-

ing the experiment, the subjects seated on a comfortable chair in front of the

screen about 60 cm away.

We used Ag/AgCl active electrodes of Guger Technologies (g.tec) named
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FIGURE 5.1: Image of displayed targets that reversed
black/white pattern. Subjects were instructed to gaze at a tar-

get framed by a white rectangle.

g.LADYbird, g.LADYbirdGND (for GND), and g.GAMMAearclip (for ref-

erence, ear-clip type) for recording EEG signals. These were driven by the

power supply unit named g.GAMMAbox (g.tec). Twenty five electrodes fol-

lowing the 10-5 system [93] were positioned at CPz, CP1, CP2, CP3, CP4,

CP5, CP6, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz,

O1, O2 and Iz. The electrodes for GND and reference were AFz and A1,

respectively. The signals were amplified with a configuration of 50 µV/V

(20,000 times) by a biosignal amplifier, MEG-6116 (Nihon Kohden) that had

lowpass and highpass analog filter for each channel. Cut off frequencies of

the low-pass and the high-pass filters were set to 100 Hz and 0.5 Hz, re-

spectively. The amplified signal was sampled by an A/D converter, AIO-

163202FX-USB (Contec), with a sampling rate of 1, 200 Hz. The sampled sig-

nals were recorded with Data Acquisition Toolbox of the MATLAB (Math-

Works).
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5.2.2 Design of Visual Stimuli

Figure 6.1 shows an image of displayed targets. As illustrated in Figure 6.1,

sixteen visual stimuli corresponding to each command were displayed on the

screen. All stimuli were about 5 centimeters square large (visual angle of 4.77

deg) and arranged at equal intervals. Visual stimuli on each row flickered

with frequencies of 12, 13, 14, or 15 Hz, respectively, and visual stimuli on

each column flickered with phases of 0, 90, 180, or 270 degree, respectively.

To produce such flickering stimuli described above, an approximation ap-

proach proposed by Wang et al.[92] was used. In this method, a sequence of

visual flicker s(f, ϕ, i) at i-th frame with frequency f and phase ϕ as follows:

s(f, ϕ, i) = square[2πf(i/RefreshRate) + ϕ] , (5.1)

where square[·] denotes the operator that generates a 50% duty cycle square

wave with levels 0 and 1.

5.2.3 Task

A task of of the subjects in a trial is described below. The subjects were asked

to press the Enter key to start a trial. One trial consisted of 1.5 sec of pre-

interval, 4.0 sec of flickering time, and 1.5 sec of post-interval. In pre-interval,

not-flickering targets and a white rectangle were displayed. In flickering

time, all stimuli started flickering and the subjects gazed at the instructed

target by the white rectangle. In post-interval all stimuli stopped flickering.

After each trial, the task was stopped and the subjects were asked to rest their

eyes. The task was restarted when the subjects pressed the Enter key again.

All target stimuli were indicated 20 times each in a random order. Hence,

each subject performed 320 trials.
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5.2.4 Data analysis for SSVEP recognition

EEG signals recorded at eight following channels, PO3, PO4, PO7, PO8, POz,

O1, O2, and Oz that corresponded to parieto-occipital region were analyzed

offline. The signals for 0.15 sec just after flickering started were neglected

considering a delay of SSVEP onset [99]. Following two methods were ap-

plied to the signals to recognize SSVEPs and detect commands: the previous

work based on CCA as a contrast method and the proposed method were

applied to the signals.

CCA-based method [37]

Recently, a method for detecting SSVEP, which was based on CCA and uti-

lized training data as a reference signal, has been proposed [37]. CCA is

a statistical method to measure a relationship between two sets of multidi-

mensional variables [38]. Let S1 ∈ RI1×N and S2 ∈ RI2×N be two multidi-

mensional signals that are normalized to have zero mean and unit variance.

Their weighted linear combinations, called canonical variates, are denoted

by wT
1 S1 and wT

2 S2. CCA computes the weight vectors w1 and w2 that maxi-

mize the following maximization problem:

ρ = max
w1,w2

wT
1 S1S

T
2w2√

wT
1 S1ST

1w1

√
wT

2 S2ST
2w2

, (5.2)

where ρ is called a canonical correlation coefficient. The optimal weight vec-

tors w1 and w2 can be obtained by solving a generalized eigenvalue problem.

The method first finds three spatial filters which enhance the SSVEP com-

ponents. The three spatial filters are obtained as weight vectors by apply-

ing CCA to all two-combinations of three multichannel signals which are a

test EEG signal, an artificial reference signal, and a training reference signal,

which are respectively denoted by X ∈ RC×N , Yk ∈ R2H×N , and Zk ∈ RC×N ,

where the subscript, k, describes the index for stimuli. If the kth stimulus
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has a frequency of fk, then the artificial signal Yk consists of Fourier series of

simulated stimulus signals given as

Yk = [sin(2πfkt), cos(2πfkt), . . . , sin(2Hπfkt), cos(2Hπfkt)]
T , (5.3)

where H is the number of harmonics in the Fourier series, the first two com-

ponents are the sinusoids of the fundamental frequency fk and the others

are harmonics. Additionally, the training reference signal Zk corresponding

to the kth stimulus is obtained by averaging EEG signals of a training set

across trials. In this chapter, Zk was obtained based on leave-one-out cross-

validation. Letting S1 be X and S2 be Yk in (5.2), we obtain a spatial filter,

w1, denoted by wXY. In the same way, we can obtain wXZ from X and Zk

and wZY from Zk and Yk. Using these spatial filters, the correlation coeffi-

cients between the canonical variate of the test data X and that of the training

reference signal Zk are computed as follows:

ρk =



ρk,1

ρk,2

ρk,3

ρk,4


=



ρk

Corr
(
wT

XYX,wT
XYZk

)
Corr

(
wT

XZX,wT
XZZk

)
Corr

(
wT

ZYX,wT
ZYZk

)


, (5.4)

where ρk is the canonical correlation coefficient between X and Yk, and Corr(·, ·)

is the Pearson’s correlation coefficient. The correlation coefficients are com-

bined and used for detecting a command as follows:

k⋆ = arg max
k

4∑
i=1

sign(ρk,i) · ρ2k,i . (5.5)
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5.2.5 Proposed method based on multiset CCA

In CCA-based method [37], the generalize eigenvalue problem has to be

solved several times to obtain the multiple spatial filters as described above.

Therefore we propose to employ MCCA to obtain spatial filters that are given

by solving the generalized eigenvalue problem just once.

MCCA is a generalization of CCA to multiple datasets [47]. It finds weight

vectors that maximize a correlation between weighted linear combinations of

each dataset, called canonical variates. To maximize the overall correlation,

Kettenring [47] listed five possible objective functions. Here, we adopted the

objective function called the MAXVAR since it is a natural extension of CCA

to multiple datasets and can lead to a solution directly [96].

Let Si ∈ RIi×N (i = 1, . . . , Q) be an Ii-channel signal that is normalized

to have zero mean and unit variance. Their linear combinations, canonical

variates, are denoted by wT
i Si, where wi ∈ RIi×1 is a weight vector. With the

MAXVAR criterion, MCCA solves following maximization problem to find

weight vectors w = [wT
1 ,w

T
2 , · · · ,wT

Q]
T :

ρ = max
w1,...wQ

Q∑
i̸=j

wT
i SiS

T
j wj s.t.

1

Q

Q∑
i=1

wT
i SiS

T
i wi = 1 . (5.6)

Using a Lagrange multiplier technique, this objective function can be trans-

formed into a generalized eigenvalue problem:

(R−P)w = ρPw , (5.7)

where

R =


S1S

T
1 · · · S1S

T
Q

... . . . ...

SQS
T
1 · · · SQS

T
Q

 , P =


S1S

T
1 · · · O

... . . . ...

O · · · SQS
T
Q

 . (5.8)
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The eigenvectors corresponding to the eigenvalues sorted in a descending

order and the largest eigenvalue are denoted by w
(1)
i ,w

(2)
i , . . . ,w

(ΣiIi)
i and

λ(1), respectively. The largest eigenvalue can be interpreted as the similarity

of those multiple datasets and the eigenvectors corresponding to the large

eigenvalues can be interpreted as the weight vectors that increase the corre-

lation between these datasets.

In this chapter, MCCA is applied substituting the EEG signal of test data

X for S1, the artificial reference signal Y for S2, and the training reference

signal Z for S3. Applying MCCA to these datasets, spatial filters w
(l)
X (l =

1, . . . , L ≪ C + 2H + C) that are eigenvectors corresponding to top L eigen-

values and the largest eigenvalue λ
(1)
k are obtained. With those spatial filters,

the test data X and the training reference signal Zk are projected. Subse-

quently, correlation coefficients between these two projections are obtained

as:

ρ
(l)
k = Corr

((
w

(l)
X

)T

X,
(
w

(l)
X

)T

Zk

)
. (5.9)

The correlation coefficients are computed for each command k (k = 1, . . . , K)

and each spatial filter w(l)
X (l = 1, . . . , L) following Equation (6.9). The largest

eigenvalue and the correlation coefficients are combined and used for detect-

ing a command as follows:

k⋆ = arg max
k

λ
(1)
k

L∑
l=1

sign
(
ρ
(l)
k

)
·
(
ρ
(l)
k

)2

. (5.10)

It is worth noting that there is a difference between the proposed method

and a method proposed by Zhang et al.for detecting the frequency of SSVEP

using MCCA [96]. In Zhang et al.’s method, MCCA was employed to ob-

tain an optimal reference signal instead of the artificial reference signal by

extracting common features in the training set, while the proposed method
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employs MCCA to extract common features between the test data, the artifi-

cial reference signal, and the training set.

5.2.6 Performance Criterion

To evaluate performance, accuracy of command detection was measured. In

addition, simulated ITR [2] was also measured as follows:

ITR =
60

U

[
log2 K + P log2 P + (1− P ) log2

1− P

K − 1

]
, (5.11)

where the unit of the ITR is bits/min, U [sec] is the mean time to input one

command, K is the number of selectable commands (here, K = 16), and P is

the accuracy. In this chapter, U was defined as U = Tg + Td + Ta, where Tg

[sec] was the time for the subjects to shift their gazes, Td [sec] was the delay

of SSVEP onset described before, and Ta [sec] was the length of the signal to

analyze. Here these were set as Tg = 0.5, Td = 0.15 and Ta was 0.1 to 2.0 sec

with an interval of 0.1 sec, respectively. These values were set to simulate

and evaluate an online performance.

5.3 Results and Discussions

5.3.1 Experimental results

Number of spatial filters

Figure 5.2 shows box plots of the distributions of the ITR analyzing 0.5 sec of

the data length with respect to the number of spatial filters L = 1, . . . , 8. The

bands inside the boxes represent the median. Figure 5.2 illustrates that the

ITR tended to increase with the number of spatial filters increased. The ITR
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FIGURE 5.2: Box plot of the distribution of the ITR with respect
to the number of spatial filters L.

remained steady in the case of using more than five spatial filters. These re-

sults suggest the efficacy of using more than one spatial filter, i.e., the weight

vector corresponding to the largest eigenvalue.

Accuracy and ITR

Figures 5.3a and 5.3b show the averaged accuracy and ITR across the subjects

with respect to the data length to be analyzed, respectively. The number of

spatial filters in the proposed method was set to L = 5 according to the results

previously described in Section 5.3.1.

As shown in Figure 5.3, the proposed method outperformed the contrast

method in terms of both accuracy and ITR especially when the data length

was shorter than approximately 1.0 sec. The proposed method achieved at

the peak of averaged ITR with the data length of 0.5 sec while the contrast

method achieved at the peak of averaged ITR with the data length of 0.7 sec.
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When the data length was longer than 1.0 sec, the proposed method and the

contrast method showed similar performance.

5.3.2 Statistical verifications

A paired-samples t-test was conducted to compare the accuracy and the ITR

of the proposed method and the contrast method. The proposed method

showed significantly higher accuracy and ITR than the contrast method in

the case of using the data length of 0.2 to 0.7 sec (p < 0.05) as illustrated in

Figure 5.3. For instance, in the case of using the data length of 0.5 sec, there

was a significant difference in the accuracy of the proposed method (75.91±

22.03%) and the contrast method (71.99±20.51%); t(10) = 4.08, p < 0.01, and

in the ITR of the proposed method (126.74± 55.95 bits/min) and the contrast

method (114.25 ± 51.94 bits/min); t(10) = 4.10, p < 0.01. Moreover, there

was also a significant difference in the highest ITR of the proposed method

(126.74±55.95 bits/min; Ta = 0.5 sec) and the contrast method (118.12±48.15

bits/min; Ta = 0.7 sec); t(10) = 2.93, p < 0.05. Taken together, these results

suggest that the proposed method allowed us to detect commands faster and

more accurate than the contrast method.

5.4 Conclusions

A novel method to recognize SSVEPs for mixed-coded SSVEP-based BMIs

was proposed. The proposed method employed MCCA to obtain spatial fil-

ters which enhanced SSVEP components. The experimental results showed

a significant improvement in command recognition accuracy and ITR us-

ing the proposed method. These results indicate the efficacy of employing

MCCA to recognize the frequency and the phase of SSVEPs.
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FIGURE 5.3: Averaged (a) accuracy and (b) ITR across the sub-
jects with respect to the data length. The asterisks indicate sig-
nificantly increased (a) accuracy and (b) ITR compared with

Nakanishi et al.’s method.
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Chapter 6

Asynchronous SSVEP-Based BMI

One of the challenges in the area of brain–computer interfacing (BMI) is to

develop an asynchronous BMI or a self-paced BMI that detects whether a user

intends to pass messages. This chapter proposes a novel asynchronous BMI

that uses mixed frequency and phase-coded visual stimuli, which can pro-

vide high-speed and accurate command entries. The mixed-coded visual

stimuli were presented as flickers with a following blank interval to synchro-

nize the recorder of electroencephalogram (EEG) with the stimuli, which was

aimed to detect the phase in an asynchronous situation. For decoding from

the measured EEG, multiset canonical correlation analysis (MCCA) was effi-

ciently exploited for recognizing the intentional state and the intending com-

mand. The proposed asynchronous BMI was tested on 11 healthy subjects.

The proposed decoder was capable of discriminating between the IC/NC

state and determining the command faster and more accurately than the

contrast methods, achieving AUC of 0.9191 ± 0.1206 and command recog-

nition accuracy of 91.08 ± 13.97% with data lengths of 3.0 seconds. The BMI

based on mixed-coded visual stimuli was able to be implemented in an asyn-

chronous manner, and the MCCA-based decoder outperformed the conven-

tional ones in terms of discriminability of intentional states and command

recognition accuracy. The present study showed that an asynchronous BMI

can be implemented with mixed-coded visual stimuli for the first time, which

enables a large increase in the number of choices/commands.
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6.1 Introduction

A few works on decoders for asynchronous SSVEP-based BMIs have been

reported in the last decade [43, 44, 41, 45, 46]. Recently developed methods

for decoding the states and commands in the case of frequency-coded asyn-

chronous BMIs include: classification based on common spatial pattern (CCSP)

[44], thresholding based on minimum energy combination (TMEC) [41], threshold-

ing ratios of CCA coefficients (TRCC) [46], and clustering canonical correlations

(CCC) [100]. Parini et al.presented the CCSP method that employs common

spatial pattern (CSP) to extract features and classify IC/NC states [44]. CSP

can be used to find spatial filters that maximize the variance of one class and

minimize the variance of the other class [101]. This method is intended to

find a spatial filter that maximizes the variance of the IC class and minimizes

that of the NC class. After the spatial filtering based on CSP, the method

extracts features based on the periods, taking the advantage of the character-

istics of SSVEPs, i.e., periodic signals. Lastly, a multi-class classifier is used to

determine the IC/NC state and the command. Cecotti reported on the TMEC

method [41] using a minimum energy combination (MEC) approach [102].

In the method, normalized frequency powers are computed for each stimu-

lus frequency following an MEC approach, and the frequency is detected if

the normalized frequency power is greater than a predefined threshold. The

method also employs pseudo stimulus frequencies to improve its reliability.

Xia et al.proposed the TRCC method [46] to discriminate between IC/NC

states based on correlation coefficients computed by the standard canonical

correlation analysis (CCA) [39]. With the standard CCA approach, correla-

tion coefficients are computed for each stimulus frequency. The method clas-

sifies IC/NC states by a predefined threshold for a ratio of the second largest

coefficient to the largest coefficient, which is based on an assumption that the

ratio would be small in the IC state while it would be large in the NC state.
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In regard to TMEC and TRCC, the threshold to determine the IC/NC state is

determined empirically or adjusted manually, however, the optimization of

the threshold is generally strenuous. Furthermore, in the CCC method pre-

sented by Poryzara and Materka [100], CCA is first applied to obtain correla-

tion coefficients as features and feature vectors for each stimulus frequency

are constructed. With the feature vector, centroids of the IC state and that of

the NC state are obtained by k-means clustering analysis where the number

of clusters is set to 2. Then, a new feature vector is classified based on the

nearest neighbor method with those two centroids.

The main problems of the above-mentioned asynchronous BMIs are three-

fold: 1) to the knowledge of the authors, all the asynchronous BMIs based

on SSVEP use frequency-coded visual stimuli, which have a limitation on the

number of choices/commands being presented on a display; 2) it appears

that the performance levels in detecting an intentional state and an intended

command are not sufficiently high. Accordingly, to ensure the detection, the

final decision of the states and the command is made if the detected com-

mands are consecutive and coherent for the last few times; in other words,

the detection procedure has to be repeatedly applied to determine the state

and a command [44, 46]; 3) in design, the NC state can be detected by these

methods. However, even though all the methods mentioned above devel-

oped BMIs that can detect the NC state, except for the TRCC, the experiment

evaluated only the case where subjects were supposed to be in the IC state all

the time. This means that there was no verification of the ability to discrimi-

nate between IC/NC states [44, 41, 100].

In this chapter, we propose to use not only frequency but also phase,

known as mixed-coded visual stimuli [48, 37, 49] in an asynchronous BMI,

yielding an increase of the number of choices/commands. So as to detect the

phase of SSVEPs asynchronously, the visual stimuli were presented as flick-

ers putting a non-flickering blank interval between each flickering interval
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to synchronize the recorder of EEG with the stimuli. For discriminating be-

tween IC and NC states as well as detecting commands in the case of mixed-

coded visual stimuli, the proposed system incorporates a novel method that

exploits multiset canonical correlation analysis (MCCA) [47, 49], yielding

spatial filters that enhance the SSVEP component. We hypothesized that the

proposed implementation with the proposed MCCA decoder would increase

the accuracy in command detection compared to the conventional decoders

in the classical setting of frequency-coded stimuli.

The rest of the chapter is organized as follows: Section 6.2 describes the

methods, including the conducted experiment and the proposed method to

implement an asynchronous BMI based on mixed-coded visual stimuli; Sec-

tion 6.3 summarizes the experimental results, comparing them to the con-

ventional decoders; Section 6.4 describes the comprehensive evaluation of

the performance of the proposed asynchronous BMI; Section 6.5 concludes

the chapter and suggests future works.

6.2 Methods

6.2.1 Experimental Settings and Data Acquisition

Ten males and one female took part in our experiment as unpaid volunteers

and were given informed consent forms. Their age ranged from 21 to 28

(mean age = 23.3 ± 2.0), and six of them had prior BMI experience. All sub-

jects were healthy and had normal or corrected-to-normal vision. This study

was approved by the research ethics committee of Tokyo University of Agri-

culture and Technology.

We used Ag/AgCl active electrodes, which are products of Guger Tech-

nologies (g.tec) named g.SCARABEO, g.SCARABEOgnd (for GND), and g.GAMMAearclip

(for reference, earclip type) for recording EEG data. These were driven by a
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g.GAMMAbox (g.tec) power supply unit. Fifteen electrodes were located at

Pz, P1, P2, P3, P4, P5, P6, POz, PO3, PO4, PO7, PO8, Oz, O1, and O2 in ac-

cordance with the international 10–10 system [103]. The electrodes for GND

and reference were AFz and A1, respectively. The signals were amplified by

MEG-6116 (Nihon Kohden), which applied lowpass and highpass analog fil-

ters for each channel. The cutoff frequencies of the lowpass and the highpass

filters were set to 100 Hz and 0.5 Hz, respectively. The EEG signal was sam-

pled by an A/D converter (AIO-163202F-PE, Contec) with a sampling rate of

fs = 1200 Hz. The signals were recorded with the Data Acquisition Toolbox

from the MATLAB (MathWorks). In an offline data analysis, all signals were

first band-pass filtered between 5 and 50 Hz. Signals of 0.15 seconds just after

visual stimuli started flickering were neglected and considered a latency of

SSVEP [99].

A 24-inch LCD monitor (BenQ, XL2411T) with a resolution of 1,920 ×

1,080 and a refresh rate of 120 Hz was used to display targets. The subjects

were seated in a comfortable chair in front of a display 55 cm away so that

they could look at the display straight ahead.

6.2.2 Mixed-coded Visual Stimuli

Figure 6.1 shows an image of displayed visual stimuli as targets. In the

present study, a speller was implemented by presenting visual stimuli with

letters. As illustrated in Figure 6.1, 28 visual stimuli with letters as targets

were displayed, and a cross was also displayed at the center of the screen.

The size of the visual stimuli was 4 cm on a side, and the interval between

two adjacent targets was 2.5 cm. Visual stimuli were square and reversed

to black and white according to the frequencies and phases of 13.0–16.5 Hz

with an interval of 0.5 Hz and 0–270 degree with an interval of 90 degree.

Each stimulus was presented with a specific combination of the frequency
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FIGURE 6.1: Image of displayed visual stimuli for the proposed
asynchronous BMI. In the experiment, subjects were asked to
gaze at a part framed by a blue rectangle. Each visual stimulus
flickered according to the frequency and phase shown at the

top and left of the image, respectively.

and phase, according to previous works on SSVEP-based BMIs using mixed

frequency and phase coded visual stimuli [48, 37, 49], as shown in Figure

6.1. To produce those stimuli, an approximation method [92] was used. In

this approach, a sequence of visual flickers s(f, ϕ, i) at the i-th frame with

frequency f and phase ϕ was used as follows:

s(f, ϕ, i) = square[2πf(i/RefreshRate) + ϕ], (6.1)

where square[·] denotes the operator that generates a 50% duty cycle square

wave with levels 0 and 1 [92].

6.2.3 Design of an Asynchronous BMI

Figure 6.2 illustrates the time course of the data analysis in the proposed

asynchronous BMI. The bottom of the figure shows an example of outputs.
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FIGURE 6.2: Time course of presenting visual stimuli and ana-
lyzing the EEG signal.

The proposed BMI repeatedly flickers the visual stimuli shown in Figure 6.1

for 3.0 seconds and stops flickering for 0.5 seconds as a blank interval. Every

3.0 seconds, a windowed EEG with a frame size of 0.5–3.0 seconds is ana-

lyzed and classified into either commands or NC by the approach described

in Section 6.2.4. It should be emphasized that the underlying idea behind the

blank interval of 0.5 seconds is to synchronize the recorder of EEG with the

stimuli in order to decode the phase of SSVEPs.

6.2.4 State and Command Detection

A key to implementing a mixed-coded BMI is a method for detecting com-

mands. A recently developed decoder by Nakanishi et al.for a synchronous

BMI based on mixed-coded visual stimuli [37] uses the standard CCA [39]

together with a reference signal composed of a training data set. This syn-

chronous BMI showed the highest ITR ever reported at that time. Motivated

by the method above, in this chapter, we employed a simpler command de-

tector based on MCCA [49] and a support vector machine (SVM) [104]. The

proposed MCCA-based decoder would be more efficient than Nakanishi et
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al.’s approach, since the proposed decoder only needs to solve a single eigen-

value problem, though the method [37] should solve three different eigen-

value problems. Figure 6.3 illustrates the architecture of the proposed de-

coder. As shown in Figure 6.3, MCCA is first applied to three datasets fol-

lowing test data X, an artificial reference signal Yk, and a training reference

signal Zk which is composed by utilizing a training set. Thereby, correlation

coefficients are computed to obtain features. Those features are classified as

ICk (k = 1, . . . , K) state or NC state using multi-class SVM, where k denotes

an index of a command assigned to the kth stimulus. Details for each part

are described below.

Feature Extraction Using Multiset CCA

MCCA is a statistical method to evaluate a similarity between multiple datasets

[47, 95]. In the proposed decoder, MCCA was first applied to three datasets:

X, Yk, and Zk. Using spatial filters with respect to the test data obtained by

MCCA, correlation coefficients between linear combinations of the test data

and that of the training reference signal were computed and used as features.

MCCA is a generalization of CCA to multiple datasets [47, 95]. It finds

spatial filters that maximize a correlation between weighted linear combina-

tions of each dataset, called canonical variates. Let Si ∈ RIi×N (i = 1, . . . , Q)

be Q multi-channel datasets that were normalized to have zero mean and

unit variance. Their linear combinations, canonical variates, are denoted by

wT
i Si, where wi ∈ RIi×1 is a spatial filter. With the MAXVAR criterion [47, 94,

97], MCCA solves the following maximization problem to find spatial filters
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w = [wT
1 ,w

T
2 , . . . ,w

T
Q]

T :

ρ = max
w1,...wQ

Q∑
i̸=j

wT
i SiS

T
j wj (6.2)

s.t.
1

Q

Q∑
i=1

wT
i SiS

T
i wi = 1. (6.3)

Using a Lagrange multiplier technique, this objective function can be trans-

formed into a generalized eigenvalue problem:

(R−P)w = ρPw, (6.4)

where
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The eigenvectors corresponding to the eigenvalues are sorted in a descending

order, and the largest eigenvalue are denoted by w
(1)
i ,w

(2)
i , . . . ,w

(ΣiIi)
i and

λ(1), respectively. The largest eigenvalue can be interpreted as representing

the similarity of those multiple datasets, and the eigenvectors corresponding

to the large eigenvalues can be interpreted as representing the spatial filters

that increase the correlation between these datasets.

In the proposed architecture, S1, S2, and S3 correspond to the EEG signal

of test data X, the artificial reference signal Yk, and the training reference sig-

nal Zk. The artificial reference signal Yk with respect to a stimulus frequency

fk consisted of a Fourier series of simulated stimulus signals given as

Yk =

[
Yk(0) Yk(1/fs) · · · Yk((N − 1)/fs)

]
, (6.6)
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where

Yk(t) =

[
sin(2πfkt) cos(2πfkt) · · ·

sin(2Hπfkt) cos(2Hπfkt)

]T
, (6.7)

Yk = [sin(2πfkt), cos(2πfkt), . . . , sin(2Hπfkt), cos(2Hπfkt)]
T , (6.8)

where H is the number of harmonics in the Fourier series, the first two com-

ponents are the sinusoids of the fundamental frequency fk, and the others

are harmonics. Additionally, the training reference signal Zk correspond-

ing to the kth stimulus was defined as the averaged EEG signals of a train-

ing set across trials. Applying MCCA to these datasets, the spatial filters

w
(l)
X (l = 1, . . . , L ≪ C+2H+C) that were eigenvectors corresponding to the

top L eigenvalues and the largest eigenvalue λ
(1)
k were obtained. With those

spatial filters, the test data X and the training reference signal Zk were pro-

jected. Subsequently, correlation coefficients between these two projections

were obtained as follows:

ρ
(l)
k = Corr

((
w

(l)
X

)T

X,
(
w

(l)
X

)T

Zk

)
. (6.9)

The correlation coefficients were computed for each command k (k = 1, . . . , K)

and each spatial filter w(l)
X (l = 1, . . . , L) following Equation (6.9). The largest

eigenvalue and the correlation coefficients were combined as

r
(l)
k = λ

(1)
k sign

(
ρ
(l)
k

)
·
(
ρ
(l)
k

)2

(6.10)
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and used as features. The following feature vector

u =

[
r
(1)
1 · · · r

(l)
k · · · r

(L)
K

]
∈ R1×K·L (6.11)

was used to estimate the intentional state and the intended command.

Classification Using Multi-class SVM

To estimate the intentional state and the command simultaneously, multi-

class classification was employed. Specifically, M -class SVM with one-versus-

rest approach [104] was used, where M = K + 1 indicates the total number

of classes to classify, that is, the K classes of the IC state and the NC class. In

the one-versus-rest approach, M independent SVMs were utilized. For the

SVMs, a radial basis function (RBF) kernel was employed, and the parame-

ters were set to c = 1, γ = 1
K·L , where c is a cost parameter, γ is a parameter

of the RBF kernel, and K · L indicates the dimension of the feature vector

defined in Equation (6.11).

6.2.5 Experiment

The subjects performed the following tasks. In a trial, the subjects gazed at

one of the visual stimuli or the center cross that was instructed by a blue rect-

angle in a random order. Trials corresponding to each stimulus were referred

to as ICk (k = 1, . . . , 28) trials, and trials corresponding to the center cross

were referred to as NC trials. One trial consisted of 3.0 seconds of flickering

time and 0.5 seconds of blank interval. It corresponds to a set of the flicker-

ing interval and the blank interval in Figure 6.2. First, non-flickering targets

and a blue rectangle were displayed. In flickering time, all stimuli started

flickering and the subjects gazed at the instructed target, that is, one of the

visual stimuli or the center cross. In the blank interval, all stimuli stopped

flickering and the blue rectangle instructing the next target was displayed.
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ICk (k = 1, . . . , 28) trials were performed 10 times each, and NC trials were

performed 20 times; thus, 280 IC trials and 20 NC trials equal 300 trials in

total that were performed by one subject. After every 10 trials, the task was

stopped in order to reduce visual fatigue, and it was restarted when the sub-

jects pressed the space bar.

6.2.6 Contrast Methods

The conventional decoders for asynchronous SSVEP-BMI described in Sec-

tion 6.1 were employed as contrast decoders to evaluate the validity of the

proposed decoder. The contrast methods included CCSP [44], TMEC [41],

TRCC [46], and CCC [100]. CCSP and TRCC originally identify the command

by using consecutive frames, and only when some consecutive and coherent

commands were detected the final output of command was determined. To

fairly and simply compare the performances of the proposed decoder and

the contrast ones, these methods were implemented to determine the com-

mand/state based on a single detection.

The parameters of these methods were set as follows:

CCSP Multi-class regularized discriminant analysis (RDA) [105] with a boost-

ing technique [106] was employed as a classifier. Two parameters for RDA

were selected using a grid search procedure based on 4-fold cross-validation.

Moreover, for a boosting technique, five weak classifiers were trained to cre-

ate a strong classifier.

TMEC The parameter of the softmax function α was set to 0.25 and the

threshold ζ , which discriminated between IC/NC states, was set to 0.5. These

parameters were set according to [41]. In addition, the pseudo stimulus fre-

quencies were chosen as 13.25–16.25 Hz with an interval of 0.5 Hz, which

were averages of the two adjacent frequencies used to present visual stimuli.
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TRCC The threshold θ, which discriminated between IC/NC states, was

chosen according to the Bayesian classification rule using a training set. It set

the threshold θ where the posterior probability of the IC state was equal to

that of the NC state.

CCC The threshold δ of Euclidean distance between two centroids of IC/NC

states was set to 0.25, according to [100]. If the distance between those two

centroids did not achieve the threshold, two centroids that had the maximum

distance were chosen.

6.2.7 Performance Evaluation

The performance of these methods were evaluated based on 5-fold cross-

validation. As a criterion of the performance regarding with discriminability

of the IC/NC states, area under the curve (AUC) was measured with respect

to receiver operating characteristic (ROC) curve plotted sensitivity against

1− specificity varying a threshold. The sensitivity (SEN) and specificity (SPC)

were defined as follows:

SEN =
TP

TP + FN
, (6.12)

SPC =
TN

FP + TN
, (6.13)

where TP (true positive) is the number of correctly detected IC trials, FN

(false negative) is the number of falsely detected IC trials, FP (false positive)

is the number of falsely detected NC trials, and TN (true negative) is the

number of correctly detected NC trials. For the proposed method and the

contrast methods, the parameter ϵ in the following equations was set at vari-

ous values, respectively:
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CCSP ∆NC + ϵ, where ∆NC was a confidence score corresponding to NC

state;

TMEC ζ + ϵ, where ζ was the predefined threshold;

TRCC θ + ϵ, where θ was the fixed threshold which was determined using

a training set;

CCC d(unew
k ,CNC

k )+ ϵ, where d(unew
k ,CNC

k ) was a distance between a feature

vector of the test data and the centroid of the NC state;

Proposed method ΠNC + ϵ, where ΠNC was a confidence score correspond-

ing to the NC state.

Moreover, the following three types of command recognition accuracy

were also measured: frequency (8 commands), phase (4 commands), and

mixed frequency and phase (28 commands), denoted by FACC for frequency,

PACC for phase, and MACC for mixed recognition accuracy, respectively.

The command recognition accuracy was measured under the condition of

TP, that is, when the IC trial was correctly detected as IC state.

After measuring their performances, statistical tests including Friedman’s

one-way analysis of variance (ANOVA) and post hoc tests were performed

for AUC and FACC, and for each data length of EEG signal. These statistical

tests were not performed on PACC and MACC, since the contrast decoders

have not been developed for phase recognition. Friedman’s ANOVA, which

is a non-parametric test based on ranked data [107], was performed for the

performance to detect differences in the methods, including the proposed

decoder and the contrast ones. If the effect of the methods from Friedman’s

ANOVA was significant with a significance level of 0.05, post hoc tests were

performed between the proposed decoder and each contrast decoder, accord-

ing to the rank-based approach described by Siegel and Castellan [108]. A
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TABLE 6.1: AUC using the data length of 3.0 seconds. The high-
est value for each subject and the average across the subjects are

in bold.

Subjects CCSP TMEC TRCC CCC Proposed method

[44] [41] [46] [100] L = 1 L = 2 L = 3

sub1 0.942 0.824 0.982 0.994 0.975 0.983 0.979
sub2 0.997 0.949 0.996 0.999 0.989 0.980 0.981
sub3 0.929 0.781 0.742 1.000 0.997 0.998 0.998
sub4 0.940 0.862 0.991 0.997 0.997 1.000 1.000
sub5 0.764 0.666 0.780 0.937 0.899 0.876 0.834
sub6 0.925 0.704 0.896 0.949 0.950 0.904 0.893
sub7 0.718 0.522 0.678 0.855 0.619 0.644 0.621
sub8 0.861 0.654 0.984 0.998 0.996 0.996 0.996
sub9 0.992 0.904 0.959 0.997 0.982 0.975 0.978
sub10 0.842 0.623 0.842 0.845 0.940 0.914 0.873
sub11 0.678 0.470 0.656 0.780 0.766 0.704 0.612

Ave. 0.8716 0.7235 0.8642 0.9409 0.9191 0.9068 0.8878
S.D. 0.1095 0.1549 0.1312 0.0785 0.1206 0.1233 0.1455

significance level for the post hoc tests was also set to 0.05. The details of

these analyses can be found in [107, 108, 109].

6.3 Results

6.3.1 Area Under the Curve (AUC)

Figure 6.4 shows the result of AUC which represents the classification accu-

racy of the IC/NC states using the proposed MCCA-based decoder and the

contrast decoders. Table 6.1 also presents the result of AUC using the data

length of 3.0 seconds. The number of spatial filters used in the proposed

decoder was set to L = 1, 2, and 3.

As shown in Figure 6.4a, all the methods showed higher AUC with a

longer data length. The averaged AUC of the proposed decoder achieved

0.9 with data lengths of 2.6 seconds (L = 1), 2.8 seconds (L = 2), respec-

tively. Meanwhile, the averaged AUC of CCC [100] achieved 0.9 with a data
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length of 2.2 seconds. On the contrary, TRCC [46], TMEC [41] and CCSP [44]

did not achieve 0.9 of AUC. The proposed decoder achieved higher AUC

with the smaller number of spatial filters, as shown in Table 6.1. Hence, in

the following statistical tests, the results of the proposed decoder when the

number of filters was set to L = 1 was employed as a representative of the

proposed decoder. Reporting on the results of Friedman’s ANOVA, there

was a significant main effect of the methods on AUC for all data lengths of

the EEG signal (p < 0.05). Thus, the post hoc tests were performed for each

and all data lengths. The results of the post hoc tests are shown in Figure 6.4a

by filled/empty markers for each contrast decoder. If the proposed decoder

had significantly higher AUC (p < 0.05) compared to a contrast decoder, the

marker on a line of the contrast decoder is filled, thus, the empty markers

show no significant difference. For instance, from Figure 6.4a, we can see

that the proposed decoder had significantly higher AUC than CCC when

the data length was 0.6 seconds. It is worth noting that none of the contrast

decoders showed significantly higher AUC than the proposed one. The pro-

posed decoder based on MCCA showed significantly higher AUC compared

to CCSP, TMEC, and TRCC especially when the data length was short, for

example, when the data length was 1.0 second. There was no significant dif-

ference between the proposed decoder and CCC except for the case where

the data length was 0.6 seconds.

6.3.2 Frequency Recognition Accuracy

Figure 6.5 shows the results of the frequency recognition accuracy (FACC)

and Table 6.2 also shows it when the data length was 3.0 seconds. FACC

serves as a criterion of how accurate the frequency of the detected command

agreed with that of the correct command.
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TABLE 6.2: Frequency recognition accuracy [%] using the data
length of 3.0 seconds. The highest value for each subject and

the average across the subjects are in bold.

Subjects CCSP TMEC TRCC CCC Proposed method

[44] [41] [46] [100] L = 1 L = 2 L = 3

sub1 92.9 94.2 100.0 100.0 99.6 100.0 100.0
sub2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
sub3 94.9 94.2 100.0 95.3 100.0 100.0 100.0
sub4 99.1 98.8 100.0 100.0 100.0 100.0 100.0
sub5 60.9 63.4 97.9 97.6 99.6 100.0 100.0
sub6 90.5 70.6 94.0 93.3 99.4 99.3 100.0
sub7 40.2 51.5 88.6 87.1 72.3 80.9 72.6
sub8 80.6 91.1 100.0 99.6 100.0 100.0 100.0
sub9 100.0 99.1 100.0 100.0 100.0 100.0 100.0
sub10 73.1 79.3 98.5 95.9 98.3 99.5 98.5
sub11 53.5 36.3 90.1 78.5 86.5 78.6 75.9

Ave. 80.52 79.87 97.19 95.20 95.97 96.20 95.19
S.D. 20.87 21.76 4.29 6.84 8.81 8.17 10.38

As shown in Figure 6.5a, all the methods showed higher frequency recog-

nition accuracy with a longer data length in the same way as the AUC. FACC

of the proposed decoder was slightly higher with a larger number of spatial

filters, especially when the data length was as short as around 0.5–1.0 sec-

onds. The averaged FACC of the proposed decoder achieved 90% with the

data length of 1.8 seconds (L = 1, 2, and 3). Meanwhile, the averaged FACC

of TRCC [46] and CCC [100] achieved 90% with the data length of 1.6 and

2.2 seconds, respectively. Conversely, TMEC [41] and CCSP [44] did not

achieve 90% of accuracy. Although the proposed decoder showed slightly

higher FACC with a larger number of spatial filters, in order to put impor-

tance on the discriminability of the IC/NC state, the results of the proposed

decoder when the number of filters was set to L = 1, which achieved the

highest AUC, was again employed as a representative of the proposed de-

coder in the statistical tests. Reporting on the results of Friedman’s ANOVA,

there was a significant main effect of the methods on FACC for all data lengths

of the EEG signal (p < 0.05) as in the result of AUC. Thus, the post hoc tests
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TABLE 6.3: Phase recognition accuracy [%] using the data
length of 3.0 seconds. The highest value for each subject and

the average across the subjects are in bold.

Subjects Proposed method

L = 1 L = 2 L = 3

sub1 98.7 98.9 100.0
sub2 98.9 99.2 99.2
sub3 99.2 99.6 99.5
sub4 96.1 96.1 96.8
sub5 91.9 95.7 95.1
sub6 95.6 98.2 97.5
sub7 74.6 76.6 70.6
sub8 98.9 98.9 99.2
sub9 99.2 99.2 99.1
sub10 98.7 97.2 94.8
sub11 66.6 63.0 55.8

Ave. 92.57 92.95 91.61
S.D. 11.24 11.92 14.52

were performed for each and all data lengths. The results of the post hoc

tests are shown in Figure 6.5a in the same way as Figure 6.4a. In particular,

when the data length was as short as around 0.5–1.0 seconds, the proposed

decoder showed significantly higher FACC than CCSP, TMEC, and CCC,

whereas there was no significant difference between the proposed decoder

and TRCC. It is worth noting that none of the contrast decoders showed sig-

nificantly higher FACC than the proposed decoder.

6.3.3 Phase Recognition Accuracy

Figure 6.6 shows the results of the phase recognition accuracy (PACC) and

Table 6.3 also shows it when the data length was 3.0 seconds. The pro-

posed decoder showed slightly higher PACC with a longer data length and

the larger number of spatial filters in the same way as FACC. The averaged

PACC of the proposed decoder achieved 90% with the data length of 2.4 sec-

onds (L = 1), 2.2 seconds (L = 2), and 2.1 seconds (L = 3), respectively.
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TABLE 6.4: Mixed frequency and phase recognition accuracy
[%] using the data length of 3.0 seconds. The highest value for

each subject and the average across the subjects are in bold.

Subjects Proposed method

L = 1 L = 2 L = 3

sub1 98.7 98.9 100.0
sub2 98.9 99.2 99.2
sub3 99.2 99.6 99.5
sub4 96.1 96.1 96.8
sub5 91.9 95.7 95.1
sub6 95.6 97.5 97.5
sub7 64.1 69.5 64.3
sub8 98.9 98.9 99.2
sub9 99.2 99.2 99.1
sub10 97.1 96.6 94.8
sub11 62.3 56.5 49.6

Ave. 91.08 91.61 90.46
S.D. 13.97 14.50 16.99

6.3.4 Mixed Frequency and Phase Recognition Accuracy

Figure 6.7 shows the results of the mixed frequency and phase recognition ac-

curacy (MACC) and Table 6.4 also shows it when the data length was 3.0 sec-

onds. The proposed decoder showed higher MACC with a longer data length

and the larger number of spatial filters in the same way as FACC and PACC.

The averaged mixed frequency and phase recognition accuracy of the pro-

posed decoder achieved 90% with the data length of 2.8 seconds (L = 1) and

2.5 seconds (L = 2, 3), respectively.

6.4 Discussions

The proposed decoder achieved significantly higher AUC than TRCC [46],

CCSP [44], and TMEC [41], as shown in Figure 6.4a. Correspondingly, it

showed significantly higher FACC than CCC [100], CCSP, and TMEC, as seen

in Figure 6.5a. Concerning the speed of the system, the proposed decoder
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achieved higher AUC and FACC than the contrast ones, especially when the

data length was as short as around 0.5–1.5 seconds, as can be seen in Figures

6.4a and 6.5a. Comprehensively taking account into the results of AUC and

FACC, the experimental results indicate that the proposed decoder is capable

of discriminating between the IC/NC state and detecting the frequency of

SSVEPs faster and more accurately than the contrast decoders. Furthermore,

it was shown that the proposed approach was able to detect the phase as well

as the frequency of SSVEPs, which leads to the fact that the present study

proved that the proposed decoder can possibly be applied to a mixed-coding

based asynchronous BMI.

As can be seen in Figure 6.4b and Table 6.1, one of the subjects, sub7, had

much lower AUC compared to the other subjects with the proposed decoder.

Besides, sub7 showed low AUC almost regardless of the data length with

the proposed decoder and TMEC, while he/she achieved higher AUC with

longer data length when using CCSP, TRCC, and CCC. Such a phenomenon,

which is referred to as “BMI-inefficiency,” can be occasionally caused de-

pending on several different factors, such as individual characteristics of a

user, characteristics of classification algorithms of a BMI [110]. In this case,

the poor performance may have been due to the data length of EEG signal

used in the analysis. The proposed decoder and TMCC could have shown

high AUC if the data length was long enough. These results provide an in-

sight that a proper data length for analysis would be characteristic for each

user.

There are several EEG features which have been utilized in BMIs. Besides

SSVEP, ERP and ERD have also been widely used in asynchronous BMIs [111,

112, 113]. These BMIs have their own advantages and disadvantages [114] in

common with synchronous and asynchronous BMIs. Generally speaking,

BMIs based on ERD can be implemented without any external stimuli and

are eye-gaze independent, yet they demand more user training compared to
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the other BMIs. BMIs based on ERP, specifically ones based on P300 typically

have a high accuracy and the number of choices/commands is not limited,

yet tend to take a longer time as the number of choices/commands increases,

where P300 is one of the ERP components and is elicited by infrequent (odd-

ball) stimuli [115]. As described in Section 6.1, BMIs based on SSVEP likely

to be faster and more accurate in terms of command recognition compared

to the other BMIs. Although, the flickering visual stimuli can cause visual

fatigue and a risk of triggering seizures. Furthermore, some asynchronous

BMIs have been implemented as hybrid BMIs by efficiently combining two

out of SSVEP, ERP, and ERD [116, 117, 118]. For instance, Panicker et al.

introduced a hybrid asynchronous BMI utilizing SSVEP for discriminating

the IC/NC states and P300 for command entries, and reported the averaged

AUC of 0.859 [116]. In comparison with the other asynchronous BMIs [111,

112, 113, 115, 116, 117, 118], one of the biggest advantages of the proposed

asynchronous BMI is a fast and accurate command recognition as in the syn-

chronous BMIs based on SSVEP [26]. It achieved the averaged recognition

accuracy of 91.08% with 28 commands using the data length of 3.0 seconds

when the number of spatial filters was set to L = 1. Since there has not yet

been any established or commonly-used criterion to evaluate the capability

of discriminating the IC/NC states for asynchronous BMIs, it is difficult to

directly compare the asynchronous performance. For all that, the averaged

AUC of 0.919 of the proposed asynchronous BMI would be a considerable de-

velopment in this research field. Furthermore, in several asynchronous BMIs

[41, 46, 116], parameters, such as a threshold to discriminate the IC/NC states

are required to be determined empirically and/or adjusted manually. Some

of these approaches do not need user’s training. On the other hand, the pro-

posed decoder utilized the training data. As a result, the experimental results

showed that the proposed decoder achieved sufficiently high performance

without any additional effort of parameter tuning.
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6.5 Conclusion

The present study proposed a novel asynchronous SSVEP-BMI based on mixed

frequency and phase-coded visual stimuli. The proposed system presented

the mixed-coded visual stimuli as flickers with a following blank interval

to synchronize the recorder of EEG with the stimuli, in order to decode the

phase of SSVEPs asynchronously. For feature extraction to recognize inten-

tional (IC) or non-control (NC) states, as well as the intended command, mul-

tiset canonical correlation analysis (MCCA) based approach was exploited.

Experimental results showed that the proposed decoder had better perfor-

mance than the conventional ones in terms of discriminability of IC/NC

states and the command recognition accuracy. Moreover, mixed frequency

and phase-coding was first applied to an asynchronous SSVEP-BMI in the

study, which will be a significant contribution to the progress of the asyn-

chronous SSVEP-BMIs since it leads to a large increase of the number of

choices/commands.

The most important limitation lies in the fact that the MCCA-based de-

coder requires the training data. In order to reduce user’s training, it would

be fruitful to validate the efficacy of adaptive learning to obtain an adequate

training reference signal. Besides, there have been some attempts to utilize

stimulus frequencies in a high-frequency range for BMIs [119] to reduce vi-

sual fatigue and avoid a risk to provoke epileptic seizures. Thus, it is worth-

while to develop the asynchronous BMIs to use the high stimulus frequen-

cies. Finally, the scope of the present study was limited in terms of the evalua-

tion in the offline analysis. Therefore, further work could assess the usability

and performance of the proposed asynchronous BMI in an online experiment

with a feedback.
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FIGURE 6.3: Architecture of the proposed decoder. First, corre-
lation coefficients are obtained as features using MCCA. Next,
those features are classified as ICk or NC state using multi-class

SVM, where k = 1, . . . ,K indicates the index of commands.
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FIGURE 6.4: (a) Averaged AUC across the subjects and (b) that
of each individual subject with respect to the data length using
the proposed decoder and the contrast ones, respectively. The
legend of (b) is consistent with the one in (a). In (a), filled mark-
ers represent significant differences comparing the results of the
proposed decoder and each contrast decoder. In (b), the result
of the proposed decoder when L was set to 1 is only shown as
the representative of the proposed decoder for the sake of visi-

bility.
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FIGURE 6.5: (a) Averaged frequency recognition accuracy
across the subjects and (b) that of each individual subject with
respect to the data length using the proposed decoder and the
contrast ones, respectively. The legend of (b) is consistent with
the one in (a). In (a), filled markers represent significant dif-
ferences comparing the results of the proposed decoder and
each contrast decoder. In (b), the result of the proposed decoder
when L was set to 1 is only shown as the representative of the

proposed decoder for the sake of visibility.
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FIGURE 6.6: (a) Averaged phase recognition accuracy across the
subjects and (b) that of each individual subject with respect to
the data length using the proposed decoder, respectively. The

legend of (b) is consistent with the one in (a).
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FIGURE 6.7: (a) Averaged, mixed frequency and phase recogni-
tion accuracy across the subjects and (b) that of each individual
subject with respect to the data length using the proposed de-
coder, respectively. The legend of (b) is consistent with the one

in (a).
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Chapter 7

Conclusions and Open Problems

7.1 Conclusions

We conclude the study in this section. In this thesis, we have discussed un-

explored problems and challenges on SSVEP-based BMI. The methods have

proposed to address the problems;

1) comparison with ETI

2) calibration reduction

3) achieving higher recognition accuracy

4) asynchronousness

In Chapter 3, we compared between SSVEP-based BMI and dwelling-

based ETI, and clarified their drawbacks and advantages. Their performances

were evaluated by investigating their accuracies and information transfer

rate (ITR) with respect to the target size and the command analysis time,

i.e., time window length of EEG analysis or the dwell time. Recognition ac-

curacy and the ITR were measured by giving subjects the task of selecting

one of four targets by gazing at it. The targets were displayed in three differ-

ent sizes, with sides 20, 40, and 60 mm long, to evaluate performance with

respect to the target size. The experimental results showed that the BMI was

comparable to the ETI in terms of accuracy and the information transfer rate.
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In particular, when the size of a target was relatively small, the BMI had sig-

nificantly better performance than the ETI.

In Chapter 4, the method to reduce calibration time for SSVEP-based BMI

has been proposed. The proposed method attempts to generate from source

templates to target templates corresponding to the rest of commands. The

target templates were obtained by shifting the frequency and phase of the

source template to the desired frequency and phase. The experimental results

suggested that the proposed transferred template enabled to recognize both

frequency and phase with a small amount of calibration closely achieving the

performance using the full calibration data.

In Chapter 5, in order to detect commands fast and accurately so as to

implement mixed-coded SSVEP-BMI as a reliable interface, we presented a

novel method which employed multiset canonical correlation analysis (MCCA)

to obtain spatial filters which enhance SSVEP components. An experiment

with a mixed-coded SSVEP-BMI was conducted to evaluate performance of

the proposed method compared with the previous work. The experimental

results showed a significant improvement in command recognition accuracy

and ITR with the proposed method compared to the state-of-the-art. These

results indicate the efficacy of employing MCCA to recognize the frequency

and the phase of SSVEPs.

In Chapter 6, we proposed a novel asynchronous BMI implemented with

mixed frequency and phase-coded visual stimuli. The mixed-coded visual

stimuli were presented as flickers with a following blank interval to syn-

chronize the recorder of EEG with the stimuli, which was aimed to detect

the phase in an asynchronous situation. For decoding from the measured

EEG, MCCA was efficiently exploited for recognizing the intentional state

and the intending command. The proposed asynchronous BMI was tested

on 11 healthy subjects. The proposed decoder was capable of discriminating
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between the IC/NC state and determining the command faster and more ac-

curately than the contrast methods. The BMI based on mixed-coded visual

stimuli was able to be implemented in an asynchronous manner, and the

MCCA-based decoder outperformed the conventional ones in terms of dis-

criminability of intentional states and command recognition accuracy. The

present study showed that an asynchronous BMI can be implemented with

mixed-coded visual stimuli for the first time, which enables a large increase

in the number of choices/commands.

7.2 Open Problems

Finally, we present some open problems on SSVEP-based BMIs. Although

we have addressed the solutions for several problems, the following issues

are remaining.

7.2.1 Utilizing higher stimulus frequencies

In SSVEP-based BMI, flickering stimuli can cause visual fatigue. Addition-

ally, there is a risk of photosensitive epileptic seizures for a cirtain people.

Therefore, using higher frequency for visual stimuli have adavantages in

terms of reducing visual fatigue and the risk of epileptic seizures. Stimulus

frequencies to elicit SSVEP can be classified into three tanges: low (< 12 Hz),

medium (12–30 Hz), and high (> 30 Hz) [20]. Generally, SSVEPs elicited by

high stimulus frequencies have smaller amplitide and more difficut to detect

compared to low and medium frequency ranges. There have been several

studies reported to tackle this challenge [119, 120, 56]. For example, Saku-

rada et al.reported that frequenct recogntion accuracy achieved 93.1% using

41, 43, and 45 Hz of stimulus frequencies [56]. Although it showed an in-

portant possibility using high stimulus frequencies in SSVEP-based BMI, it

also showed the difficulties to employ those frequencies, such as, frequency
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recognition accuracy was lower (88.0%) with invisible stimulus frequencies,

61, 63, and 65 Hz; the number of classes is small; a relatively long EEG signal

(3–5 seconds) is required for analysis, which leads to a longer time to input a

command.

7.2.2 Employing training data of other users for reference sig-

nals

As described in Chapter 4, 5, and 6, utilizing individual templates as refer-

ence signals is a promising method to achieve high performance in SSVEP-

based BMI. To generate individual template, we need to collect calbration

dataset from each individual user, which can take a lot of time. In Chap-

ter 4, we proposed a method to reduce calibration by generating new tem-

plates from small calibration dataset. On the other hand, some researchers

have attempted to reduce calibration by utilizing other subjects’ calibration

data to artificially generate reference signals [91, 121]. For example, Yuan et

al.generated new templates by averaging training EEG signals of exiting sub-

jects (source subjects) across multiple subjects and trials [91]. The recognition

accuracy was enhanced by 20.94% compared to the standard CCA method

[39] where the number of the source subjects was 11. EEG signals of each

source subject were collected from 240 trials. These researches showed a po-

tential to reduce calibration and still achieve a good performance by utilizing

other users’ training data, although, it is a challenge how to collect enough

training data as an open dataset of the EEG signals (especially SSVEP) still

remails few.
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[63] Ivo Käthner, Andrea Kübler, and Sebastian Halder. “Comparison of

eye tracking, electrooculography and an auditory brain-computer in-

terface for binary communication: A case study with a participant in

the locked-in state”. J. Neuroeng. and Rehabil. 12.1 (2015), p. 1.

[64] Emanuele Pasqualotto et al. “Usability and workload of access tech-

nology for people with severe motor impairment: A comparison of

brain-computer interfacing and eye tracking”. Neurorehabil. and Neu-

ral Repair (2015), p. 1545968315575611.

[65] J.R. Wolpaw et al. “EEG-based communication: Improved accuracy

by response verification”. IEEE Trans. Rehabil. Eng. 6.3 (1998), pp. 326–

333.

[66] Kaori Suefusa and Toshihisa Tanaka. “Visually stimulated brain-computer

interfaces compete with eye tracking interfaces when using small tar-

gets”. In: 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC).

IEEE. 2014, pp. 4005–4008.

[67] Scene Camera Eye Tracking System Specifications — Arrington Research.

http://www.arringtonresearch.com/scenetechinfo.html.

Accessed: 2016-10-1.



BIBLIOGRAPHY 119

[68] Dongheng Li, Jason Babcock, and Derrick J. Parkhurst. “openEyes:

A low-cost head-mounted eye-tracking solution”. In: Proc. Symp. Eye

Tracking Research & Applicat. San Diego, California, Mar. 2006, pp. 95–

100.

[69] Hovagim Bakardjian, Toshihisa Tanaka, and Andrzej Cichocki. “Opti-

mization of SSVEP brain responses with application to eight-command

Brain–Computer Interface”. Neurosci. Lett. 469.1 (Jan. 2010), pp. 34–38.

[70] Xiaogang Chen et al. “Filter bank canonical correlation analysis for

implementing a high-speed SSVEP-based brain–computer interface”.

J. Neural Eng. 12.4 (June 2015), p. 046008.

[71] Guangyu Bin et al. “A high-speed BCI based on code modulation

VEP”. J. Neural Eng. 8.2 (Mar. 2011), p. 025015.

[72] Yu Zhang et al. “Multiway canonical correlation analysis for frequency

components recognition in SSVEP-based BCIs”. In: Int. Conf. on Neural

Informat. Process. Springer. 2011, pp. 287–295.

[73] Yu Zhang et al. “L1-regularized multiway canonical correlation anal-

ysis for SSVEP-based BCI”. IEEE Trans. Neural Syst. and Rehabil. Eng.

21.6 (2013), pp. 887–896.

[74] Yu Zhang et al. “Frequency recognition in SSVEP-based BCI using

multiset canonical correlation analysis”. Int. J. Neural Syst. 24.04 (2014),

p. 1450013.

[75] Xiaogang Chen et al. “Hybrid frequency and phase coding for a high-

speed SSVEP-based BCI speller”. In: 2014 36th Annu. Int. Conf. IEEE

Eng. Med. Biol. Soc. (EMBC). IEEE. 2014, pp. 3993–3996.

[76] Zhonglin Lin et al. “Frequency recognition based on canonical corre-

lation analysis for SSVEP-based BCIs”. IEEE Trans. Biomed. Eng. 53.12

(Dec. 2006), pp. 2610–2614.



120 BIBLIOGRAPHY

[77] Chris Lankford. “Effective eye-gaze input into windows”. In: Proc.

2000 Symp. Eye Tracking Research & Applicat. Palm Beach Gardens, Florida,

USA: ACM, Nov. 2000, pp. 23–27.

[78] John Paulin Hansen et al. “Command without a click: Dwell time typ-

ing by mouse and gaze selections”. In: Proc. Human–Comput. Interac-

tion – INTERACT’ 03. Sept. 2003, pp. 121–128.

[79] Y. Kimura et al. “SSVEP-based brain–computer interfaces using FSK-

modulated visual stimuli”. IEEE Trans. Biomed. Eng. 60.10 (Oct. 2013),

pp. 2831–2838.

[80] Masaki Nakanishi et al. “A high-speed brain speller using steady-

state visual evoked potentials”. Int. J. Neural Syst. 24.6 (Sept. 2014),

p. 1450019.

[81] Robert J. K. Jacob. “The use of eye movements in human-computer

interaction techniques: What you look at is what you get”. ACM Trans.

Inf. Syst. 9.2 (Apr. 1991), pp. 152–169. ISSN: 1046-8188.

[82] ViewConfiguration — Android Developers. http://developer.android.com/

reference/android/view/ViewConfiguration.html. Accessed: 2016-4-

30.

[83] G. Bartl, G. H. Van Lith, and G. W. Van Marle. “Cortical potentials

evoked by a TV pattern reversal stimulus with varying check sizes

and stimulus field”. British J. Ophthalmology 62.4 (Apr. 1978), pp. 216–

219.

[84] Anna Duszyk et al. “Towards an optimization of stimulus parameters

for brain-computer interfaces based on steady state visual evoked po-

tentials”. PLoS ONE 9.11 (Nov. 2014), p. 112099.

[85] Minho Kim, Byung Hyung Kim, and Sungho Jo. “Quantitative eval-

uation of a low-cost noninvasive hybrid interface based on EEG and



BIBLIOGRAPHY 121

eye movement”. IEEE Trans. Neural Syst. and Rehabil. Eng. 23.2 (Mar.

2015), pp. 159–168.
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