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Abstract—This pilot study implements a hybrid BCI system in
an effort to deduce the effects of measuring more than one brain
signal in a motor imagery (MI) task. In addition to sensorimotor
rhythms (SMRs), a steady state visual evoked potential (SSVEP)
was introduced to acquire additional information relating
to user intention. A common spatial pattern (CSP) filter
followed by a support vector machine (SVM) classifier were
used to distinguish between MI and the resting state. The
power spectral density (PSD) was used to classify the SSVEP.
Results from online simulations of EEG data collected from
10 able-bodied participants showed that the hybrid BCI’s
performance achieved a classification accuracy of 77.3±8.2%,
with an SSVEP classification accuracy of 94.4±3.5%, and MI
classification accuracy of 80.9±8.1%, an improvement upon
purely MI-based multi-class BCI paradigms.

Index Terms—Brain Computer Interface (BCI), Electroen-
cephalogram (EEG), Steady State Visually Evoked Potential
(SSVEP), Common Spatial Patterns (CSP), Motor Imagery (MI),
Hybrid, Neurorehabilitation.

I. INTRODUCTION

Stroke affects around 17 million people every year, making
it one of the world’s major sources of acquired disability [1].
A stroke occurs when there is a sudden interruption to the
flow of oxygen-rich blood to a region of the brain. Without
a supply of oxygen, brain tissues begin to die after only a
few minutes, leading to persistent functional deficits, such
as the motor impairment of the upper and lower limbs [2].
Despite lasting hemiparesis, patients have been found to make
dramatic motor recoveries due to brain neuroplasticity. This
phenomenon underpins the majority of repetitive, goal-based
rehabilitative practice as mimicking natural motor patterns
may result in the rewiring and strengthening of the motor
neural networks resulting in the restoration of normal motor
function [3]. However, since some stroke survivors have no
residual limb movement in their affected side, they are un-
able to physically execute tasks. Motor imagery (MI), which
involves the imagination of movements, offers an alternative,
as many of the same neural regions are involved in MI as
in actual movement [4]. Unlike physical practice, however,
it is impossible for a clinician to properly gauge a patient’s

compliance to MI tasks. Brain-computer interface (BCI) tech-
nology can remedy this by interpreting brain signals relating to
MI from electroencephalogram (EEG) data. Bandpower within
the µ (8-12 Hz) and β (13-30 Hz) bands have been shown to
desynchronize during movement and motor imagery, allowing
for the classification of EEG signals relating to different MI
states [5]. BCI can offer performance-dependent feedback,
providing clinicians with quantitative data, whilst encouraging
active participation from patients, an important feature in
improving patient adherence and outcomes [6].

Numerous pilot studies exploring the feasibility of using
BCI for upper limb rehabilitation after stroke have been
coupled with other interventions, like orthotic feedback or
functional electrical stimulation (FES) [7]–[11]. Providing
contingent sensory feedback reestablishes the sensorimotor
loop as the feedback is dependent on the detection of correct
brain activity, leading to neuroplasticity and motor recovery.
Notable clinical work includes a randomised controlled trial
by Ramos-Murguialday et al. who used BCI to detect MI
in 30 chronic stroke patients [12]. Whilst engaged in the
training, half of the population received genuine orthotic
feedback based on their performance whilst the other half
received random feedback. Both groups also received standard
physiotherapy. Results showed significant improvements in
volitional movement in the former group, but none in the
latter, likely owing to the lack of contingent feedback in
the latter group [12]. More recently, Biasiucci et al. reported
even larger motor improvements with their controlled trial
using BCI-FES therapy on 27 chronic moderate-severe stroke
patients [13]. Patients were given either BCI-FES or sham-FES
therapy. Only the former group benefited from the intervention,
with some patients seeing motor recovery 15 years after
their initial stroke, and, most interestingly of all, benefits
remained 6-12 months after the therapy. Although a BCI
approach to neurorehabilitation is relatively novel, preliminary
results illustrate how a BCI, when combined with contingent
activation of afferent pathways, can drive purposeful plasticity
resulting in significant functional recovery.

The BCI paradigms used in the majority of clinical trials



have involved a two class approach, i.e. the system would
classify brain signatures relating to two mental states, usually
MI and the resting state [12], [13]. Ideally, BCI systems
would have more classes, increasing the degree of control
over a given application. However, from a signal processing
perspective, the ability to resolve classes becomes increasingly
difficult with each additional class, especially when the classes
relate to movements produced by regions of the motor cortex
which are close to one another, in the case of multiple gestures
of the same hand, for instance [14]. Indeed, a study by Palma
et al. aimed to solve a 3-class MI problem concerning gestures
of the right upper limb in able-bodied participants: namely,
palmar grasp, pinch, and elbow flexion [15]. Although they
achieved classification accuracies of nearly 65%, this would
not be practical in a rehabilitation setting, falling below the
commonly held 70% threshold for BCI efficiency [16]. Any
lower than this would result in great user frustration [17].

To maintain good performance while increasing the degrees
of freedom a user has over a BCI system, this study explored
hybrid BCI technology. A hybrid system interprets more than
one brain signal, allowing clinicians to infer more information
relating to user intentions per unit of time [18]. Hybrid
BCI’s can be implemented in a variety of ways: they may
classify two signals sequentially; where the first activates the
system, and the second allows selection of an output [19]; or
simultaneously, which requires the user to perform multiple
tasks at the same time [20]. This pilot study investigates the
feasibility of combining a 2-class MI paradigm with another
mental task. We hypothesised that the inclusion of a visual
attention task in a MI-based BCI paradigm would come at
no significant cost to the user in terms of mental demand,
allowing them to provide the system with more information
relating to their intentions. We chose steady state visually
evoked potentials (SSVEPs) – a time-locked region of positive
or negative deflection amongst EEG data at around the same
frequency of a periodic stimuli [21] – as our additional signal
as it is highly robust and reliable, often providing accuracies
well in excess of 90% [22].

II. MATERIALS AND METHODS

A. Data collection and experimental paradigm

Ten able-bodied volunteers (32 ± 15 years old, 5 males,
5 females) took part in an initial data collection session
to calibrate their individual spatial filter and classifier for
differentiating between two mental states: right hand MI and
resting. EEG was recorded at a sampling frequency of 256
Hz with a total of 16 active surface electrodes. To capture
activity relating to MI, 10 electrodes were placed above the
sensorimotor cortex at C1, C2, C3, C4, C5, C6, FC3, FC4,
CP3, and CP4, according to the international 10-20 system. To
capture activity relating to SSVEPs, 6 electrodes were placed
over the parietal-occipital region at O1, Oz, O2, PO7, PO8,
and Pz. Only two of these six electrodes were used to create a
bipolar channel for SSVEP detection; Oz-Pz was the default,
however, due to subject variability, occasionally this channel
was inadequate, and the other channels were explored. The

ground electrode was placed at Fpz and the reference electrode
was placed on the left earlobe. The amplifier used was the
g.USBamp by g.tec and was set to apply a band-pass filter
from 0.5 to 100 Hz, with a notch filter at 50 Hz to reduce
power line noise.

All subjects provided written informed consent prior to their
participation in the experiments, which were approved by the
Regional Committee on Health Research Ethics for the Capital
Region of Denmark (reference H-3-2013-004) and carried out
in accordance with the corresponding guidelines and relevant
regulations on the use of human subjects for health-related
scientific research.

Only the experimental supervisor and volunteer were
present in a sound-proof room during the experimental ses-
sions. Inside the room, the lights were dimmed and the test
subject was seated 60 cm away from a computer screen
presenting visual cues and stimuli. During each trail the
participants were required to mirror the gestures shown on the
screen; first, in a movement execution (ME) session (where
they physically performed the gesture), then an MI session
(where they imagined performing the gesture). In a session
there were 45 trials of 6 s. A 4 s period of rest and refocus
followed each trial. Figure 1 shows the timing scheme for
each trail. To ensure focus, each trial began with participants
gazing at a fixation cross at the center of the screen for 2 s;
this was accompanied by a 1 s tone. Then, randomly, one of
the visual cues would appear for 6 s, during which time the
participants were instructed to hold the gesture for as long it
was present on screen. Figure 2 shows the goal-based visual
cues given during each trial: palmar grasp, pinch and point.
The use of these gestures was motivated by the fact that hand
movements like these are critical for daily life and so would be
useful in a rehabilitation setting. To limit participant fatigue,
the calibration sessions were split into 5 sub-sessions of 18
trials each, with a 2 minute breaks between each sub-session.

A hybrid session followed where each participant was
instructed to follow the same routine as before with the added
task of simultaneously focusing their gaze on one of three
flickering light-emitting diodes (LEDs), each strategically po-
sitioned around the computer screen. Figure 2 shows each
goal-based cue that was presented on screen, with an arrow
showing the direction of the corresponding visual stimuli. The
timing of the hybrid trials was the same as the calibration
session: 6 s per trial with a 4 s inter-trial interval. Again,
there were 5 sub-sessions of 18 trials.
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Fig. 1. Timing of a trial. At 0 s, a fixation cross appeared on screen for 2 s
and a tone played for 1 s. After these 2 s a visual cue was randomly presented
for 6 s, which was followed by a 2 s rest period. Afterwards the sequence
repeated for the remaining number of trials.



Fig. 2. Goal-based visual cues given during each trial. An arrow accompanies
each gesture to indicate which of the three SSVEP targets to focus on. Arrows
only apply during the hybrid sessions.

B. Pre-processing

‘EEGlab’ was used offline to split the calibration data
into epochs relating to each trial. The data was cleaned by
visual inspection and noisy trials were removed manually.
Around 5 epochs were removed for each subject. For each
participant, their calibration data was used to build a common
spatial pattern (CSP) filter. The CSP technique is based on
the simultaneous diagonalization of two covariance matrices.
It spatially filters new EEG data, creating a new time series
whose variances are optimal for the separation of EEG data
relating to two mental states. The mathematical procedure we
used to calculate the CSP filter has been previously described
[23]. We used 4 pairs of filters for feature extraction, as this
was determined to be optimal through experimentation. The
log-variances of the spatially filtered EEG signals were used
as input features to create a support vector machine (SVM),
given the efficiency that this classifier has shown in previous
work.

C. Hybrid classification

The hybrid session data was used offline to simulate an
online system. For each subject, a sliding window of 2 s (512
sampling points) moved in 1 s intervals across the hybrid EEG
data, simulating new incoming data. EEG classification was
performed with each shift of the window. The SSVEPs were
classified by using a fast Fourier transform (FFT) to estimate
the power spectrum density around the three LED frequencies
(13, 15, 18 Hz) and their first harmonics (26, 30, 36 Hz).
The harmonic sums were computed and the most powerful
frequency was presumed to be the intended class. If the class
assigned to the window matched the actual trial frequency,
then the system would proceed to the classification of the
sensorimotor rhythm (SMR) component of the signal. This
involved filtering with a band-pass filter across the µ-band (8-
12 Hz) (which was found to be the most reactive frequency
band), and the individually-calculated CSP filter. The log-
variance of the spatially filtered EEG signal was used as a
feature to classify the window with the SVM. A successfully
classified window was defined as the correct classification
of each component of the hybrid condition simultaneously.
Therefore, system accuracy was defined as the number of
correctly classified windows per session.

TABLE I
ONLINE CLASSIFICATION ACCURACIES (%) FOR THE MOTOR EXECUTION

AND MOTOR IMAGERY TASKS.

Motor Execution Motor Imagery
Subject SMR SSVEP Hybrid SMR SSVEP Hybrid

1 72.5 88.9 70.0 78.9 90.6 75.3
2 75.0 98.1 73.0 77.9 100.0 77.9
3 74.5 93.7 74.1 85.4 94.1 79.1
4 80.0 95.7 77.6 88.2 95.1 82.3
5 88.2 94.1 82.3 86.7 93.7 83.2
6 86.3 92.9 84.3 85.9 94.1 83.0
7 76.0 96.0 72.7 64.3 95.1 60.8
8 84.7 94.6 79.2 84.3 93.7 78.0
9 78.4 99.6 76.5 87.5 100.0 87.5
10 66.2 89.0 58.6 70.1 89.0 66.3

Mean 77.2 94.3 74.8 80.9 94.4 77.3
Std 6.8 3.6 7.2 8.1 3.5 8.2

III. RESULTS

The classification accuracies of the online simulation for
all 10 participants are reported in Table I. Given also are the
accuracies of the constituent signals if they were classified
individually. The hybrid BCI performed poorer than the two
component signals. This was expected as only a simultaneous
correct classification of the two component signals counted as
a successful hybrid classification. The average hybrid accuracy
of the MI-SSVEP sessions was 77.3±8.2%, and 74.8±7.2%
for the ME-SSVEP sessions. A paired t-test analysis showed
that the difference between these results are not statistically
significant (P>0.05).

SSVEP classification was highly accurate and consistent
among participants, with a mean accuracy of 94.4 ± 3.4%
and 94.3±3.6% for the MI-SSVEP and ME-SSVEP sessions,
respectively (P>0.05). No subjects were deemed SSVEP illit-
erate; Subject 2 and 9 even had 100% SSVEP classification
accuracies for their MI-hybrid run. This was an expected and
welcome result as it allowed MI classification to mostly dictate
the hybrid accuracy whilst increasing the degrees of freedom
available to the BCI system.

There was much subject variability amongst the MI-hybrid
results. Subject 9 returned excellent results, with an accuracy
of 87.5%. Whereas, Subject 7 and 10 would be considered
‘BCI illiterate’, as both achieved results below the illiteracy
threshold (70%), with accuracies of 60.8% and 66.3%, respec-
tively.

All subjects performed with ME-hybrid accuracies above
the commonly accepted threshold for BCI illiteracy, except
for Subject 1, whose performance was exactly on the boundary
between literacy and illiteracy; and, again, Subject 10, whose
poor result of 58.6% would make them unsuitable for BCI
training.

During the hybrid sessions the participants were instructed
to perform both the MI (or ME) and SSVEP task simultane-
ously for the duration of each 6 s trial. The accuracy with
respect to the length of a trail is illustrated in Figure 3 and 4.
The SSVEP condition can be seen to be consistently providing
high accuracies (> 95%) for the duration of the trial. The
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Fig. 3. Average accuracy across all trails and participants. Each data point
represents the accuracy of one of the five 2 s data windows classified during
each MI-SSVEP trial. The first point represents a two second window from
the onset of the cue at t=0 s to t=2 s, the second point spans from t=1 s to
t=3 s, and so on.
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Fig. 4. Average accuracy across all trails and participants. Each data point
represents the accuracy of one of the five 2 s data windows classified during
each ME-SSVEP trial. The first point represents a two second window from
the onset of the cue at t=0 s to t=2 s, the second point spans from t=1 s to
t=3 s, and so on.

hybrid and SMR components are less stable, varying between
68% and 84%, and appear to decrease in accuracy with time,
but not significantly so.

IV. DISCUSSION

The accuracy of the MI component from the hybrid
paradigm was 80±8.1%, consistent with the literature report-
ing on CSP algorithms for 2-class MI problems. In fact, this
was better than the 75.5± 18.2% mean accuracy reported by
Lotte et al. in their classical CSP approach to classification
of three BCI competition data sets [24]. This affirms the
work of Brunner et al. [20]: simultaneous classification of a

secondary brain signal does not necessarily have a negative
impact on MI accuracy. Also consistent was the high subject
variability, including poor performances by some subjects.
Subject 7 and 10 did not produce SMR modulations suitable
for an online system, with accuracies less than the threshold
for BCI illegibility. This is in line with the often-reported
proportion of illiterate participants in group studies: 20% [16].
Interestingly, the MI hybrid outperformed the ME hybrid. This
is a surprising result given that most participants mentioned the
added effort required of MI over ME. Perhaps more artifacts
were introduced during ME session due to the explicit motion,
although the 40 Hz upper cutoff frequency of the bandpass
filter should have removed muscle artifacts.

One of the objectives of this project was to deduce whether
a hybrid BCI could provide a more accurate system than
purely MI-based multi-class BCIs. Palma et al. designed a
similar paradigm to the one in this project, classifying three
gestures of the right upper limb in terms of ME and MI [15].
The group considered the EEG patterns produced during each
individual gesture, rather than the binary approach taken in
this project. They constructed an adaptive CSP to filter 3-class
calibration data by using the One-Versus-All (OVA) approach.
They reported an online accuracy of 64.8% for their 3-class MI
problem with similarly poorer results for their ME comparison,
61.9%. The performance of the hybrid BCI designed in this
project saw a 12.5% and 12.9% increase in MI and ME online
test session accuracy, respectively. Most likely owing to the
two-class problem being easier to solve.

It is not known the exact accuracy at which a BCI will
induce neuroplasticity. However, as Jochumsen et al. showed
with their two-class MI approach, a system performance of
around 60-70% is enough to result in an increase in cortical
projections of target muscle when combined with simultaneous
functional electrical stimulation [25]. The average classifica-
tion of the MI-SSVEP hybrid BCI designed in this project
was 77.2%, implying that the system could be beneficial in
a neurorehabilitation setting. Despite the average accuracy,
however, there were some participants who performed at the
lower end of the accuracy range offered by Jochumsen et al.
This illustrates the need for patient screenings, as not every
person may benefit from a hybrid BCI system, reflecting the
phenomenon known as ‘BCI illiteracy’. However, as a concept,
BCI illiteracy may be problematic. Thompson pointed out in
[17] that it perhaps wrongly implies that some subjects are
inherently incapable of BCI proficiency, removing the onus
from engineers to build more inclusive BCIs.

Nevertheless, the project has demonstrated the feasibility of
a MI-SSVEP hybrid in stroke rehabilitation. Short calibration
sessions can both train the classifiers and allow the patients
to become familiar with the training tasks. The system could
be customized on the advice of a therapist to provide their
patients with a more individualised therapy by increasing or
reducing the number of gestures or by changing the gesture
type.

From the outset of this project, the hybrid training paradigm
was envisioned as a supplement to a FES rehabilitation strat-



egy, as rich afferent feedback is an essential part of promoting
neuroplasticity [13]. Presently, the standard form of FES
rehabilitation strategies is mostly a passive activity with only a
tenuous link between paretic limb stimulation and mental ac-
tivities [26]. The system devised in this project, however, could
infer a user’s intention to trigger a specific stimulation pattern
and output this intention to an FES device, synchronising
functional motion with modulated brain activity. Furthermore,
this project was mostly concerned with the accuracies possible
with a hybrid system and not with making actual decisions,
or providing an external device with a command. However,
as Figure 3 shows, the accuracy is stable throughout a trial,
implying that this type of classification could be used to make
a decision in an asynchronous system by implementing a dwell
time. Müller-Putz et al. employed a dwell-time system in their
SSVEP-based BCI to allow for the control of an electrical
prosthesis [27]. They achieved this by requiring a correct
classification to be made for at least 1 second, or 4 iterations
of a sliding window, triggering a refractory period where the
system would make no further decisions, and the control signal
was sent to the electrical prosthetic. This method allowed
for asynchronous control, which offers a more pleasant user
experience over the synchronous fixed-trial method as it allows
the user to complete the training in their own time. Based on
the method used in [27], the system designed in this project
could be fashioned in a similar way. For example, if a cue
is presented for a palmar grasp, and the system classifies the
grasp correctly for multiple consecutive windows, the system
could then send a stimulation pattern to an FES device. The
BCI devised in this project used 3 classes for its SSVEP
condition, relating to 3 single-limb gestures, but it could easily
be extended to many more by adding additional LEDs at
different flickering frequencies.

Ideally, there would be no need for the inclusion of a sec-
ondary mental task. Ideally, patients could trigger a multitude
of control signals based on MI effort alone. Given the poor
spatial resolution of EEG, perhaps the future should see a shift
in focus towards other neuroimaging modalities more suited
to the task. In 2018, using MEG, Barratt et al. showed that
oscillatory beta responses to moving an index and pinky finger
of the same hand were spatially separable for participants
wearing a head-cast [28]. There are various clinical obstacles
to overcome when using MEG but this level of separability is
enviable amongst EEG researchers.

A general factor to consider when drawing conclusions
from our results, and indeed results from the majority of
MI-BCI studies, is that most, if not all of the participants
in these experiment are using BCI for the first time. The
ability to modulate SMR is a skill not immediately possessed
by everyone (BCI illiteracy/inefficiency). Indeed, as a skill, it
can be improved through practice [29]. Therefore, accuracies
reported in this article and indeed many others of a similar
nature should not be taken as a practical limit, this would be
to ignore the learning curve that comes with SMR modulation
and may be akin to judging a person’s cycling abilities after
their very first go on a bike.

V. CONCLUSIONS

In this pilot study, we have successfully implemented a MI
and SSVEP based hybrid BCI system that could potentially
be used for upper limb neurorehabilitation of stroke patients.
The system performance achieved a classification accuracy of
77.3±8.2% (hybrid), with a SSVEP classification accuracy
of 94.4±3.5%, and MI classification accuracy of 80.9±8.1%,
comparable to the accuracies of the purely MI-based 2-class
BCIs reported in literature.

Overall, the feasibility of the hybrid BCI paradigm was
confirmed, with results suggesting the system could be used in
a neurorehabilitation environment, with little to no additional
cost to the user over purely MI BCIs. Despite the encouraging
results there is still much work to be done before such a system
is embraced by the clinical world. Work needs to be done
to devise an engaging and natural-feeling training strategy
that will motivate patients to actively participate. In addition,
practicalities such as channel reduction and selection must be
addressed and considerations have to be made in regards to
calibration time if BCI paradigms are to make it out of the
laboratory and into the clinic.
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