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N
ew technologies in the field of neuroprosthetics and robotics 
are leading to the development of innovative commercial products 
based on user-centered, functional processes of cognitive neurosci-
ence and perceptron studies. The aim of this review is to analyze 
this innovative path through the description of some of the latest 

neuroprosthetics and human–robot interaction applications, in particular the 
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brain–computer interface (BCI) linked to haptic systems, 
interactive robotics, and autonomous systems. These issues 
will be addressed by analyzing developmental robotics and 
examples of neurorobotics research. These new devices show 
the benefits of using an interdisciplinary approach based on 
cognitive neuroscience, embodied and situated cognition, neu-
ral network, and deep learning. All of these products share 
the capability to adapt, online, to the dynamic environment and 
to the user’s actions. As the role of the human tutor is key in 
this learning process, these systems permit a natural and 
dynamic approach to interaction among people, neuroprosthet-
ics, and robotics self-extensions.

BACKGROUND
The use of cognitive and computational neuroscience has 
applications in the field of consumer electronics for the pro-
duction of elements and instrumentation for both interactive 
robotic interfaces and diagnostic systems. Recent research on 
the neuroprosthetics market suggests that the business in 
these branches will experience considerable development in 
the coming years [1]. Neuroprosthetics includes developing 
technologies such as deep-brain stimulation, vagus nerve 
stimulation, spinal cord stimulation, and others to arouse 
motors; visual, auditory, and haptic perception; and cognitive 
processing. An example is the construction of neuromorphic 
elements (e.g., haptic effectors that have been built in recent 
years) that are used in the BCI both for recreational and clini-
cal/therapeutic purposes.

These developments in neuroprosthetics are closely linked 
to the recent significant investment and progress in research 
on neural networks and deep-learning approaches to robotics 
and autonomous systems [2], [3]. Specifically, one key area 
of development has been that of cognitive robots for human–
robot interaction and assistive robotics. This concerns the 
design of robot companions for the elderly, social robots for 
children with disabilities such as autism spectrum disorders, 
and robot tutors for school and education [4]–[6]. Other areas 
of application focus on joint action, i.e., collaborative tasks 
where a human and a robot share workspace for joint object 
manipulation as in assembly tasks.

The research into social and collaborative robots has re-
quired a shift in the approach to robot design: from robot pre-
programming to robot learning. The state of the art of commercial 
systems, used in manufacturing and assembly robots, requires 
the precise preprogramming of the robot’s actions and the 
safe separation of the robot and human workspaces. However, 
as robot companions are required to share their environment 
with human users, it is essential to design robots that can dy-
namically and safely adapt their behavior to that of people, to 
avoid any harm to human users. Moreover, as shared human 
spaces are dynamically changing and unpredictable environ-
ments, robots have to be able to adapt and learn how to cope 
with changing situations and with individual users’ specific needs 
and preferences.

NEUROPROSTHETICS AND BCI
The field of neuroprosthetics started in the 1970s when Vidal 
[9] published a seminal article on the development of bioengi-
neering and neuroscience in which he described how cortical 
responses recorded by an electroencephalogram (EEG) (with 
very low frequencies: <1 Hz up to 30 Hz) could be interfaced 
to a digital system. This was achieved specifically through the 
analysis of event-related potentials (ERPs), responses evoked 
by sensory stimuli in certain attentional and perceptive tasks. In 
this model, the BCI is a tool that interfaces with the particular 
EEG responses and transduces them through a digital interface. 
For example, if the system is able to frame signal patterns in the 
brain responses of lateralized movement or of a negative or pos-
itive response, the system can be interfaced to a digital system 
that responds through biofeedback.

The BCI system was, at first, especially useful for individu-
als with motor paralysis, amyotrophic lateral sclerosis (ALS), 
and, in some cases, coma (even interfacing responses such as 
saccadic eye movements and reflexes). Industry and academic 
neuroengineering research applied to neurodegenerative dis-
eases has involved the development of EEG systems that can 
guarantee an acceptable degree of autonomy and communica-
tive ability to people with severe disabilities.

There have been numerous studies, especially in the last 
decade, and each of these had the aim of capturing a new 
facet or the latent potential of this system, which, to date, still 
proves to have great growth potential for the imminent future. 
The evolution of techniques that provide a better cataloging 
of data and much more effective interactions has, however, 
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led to the increasing capacity for neural control and to the 
emergence of different branches of applications within the 
BCI. For example, assistive BCI concerns the restoration of 
mobility, the ability to express oneself, and the ability to con-
trol one’s environment.

BCI has been used with respect to the most rudimentary 
form of communication (i.e., yes or no choices) using the 
technique of slow cortical potentials that, when adjusted to 
moving a cursor, employed the verbal dichotomy of asser-
tion-denial (yes–no). Subsequently, the response action range 
has widened, allowing users to compose increasingly com-
plex words. This was possible thanks to the research that led 
to the protocol of the Farwell–Donchin matrix, which cap-
tures P300 ERP components, evoked in response to the ran-
dom flash of letters that are a part of a matrix and links them 
to a specific letter [10].

As for the mobility and action in this context, there have 
been numerous efforts by the BCI research community to 
associate this device with existing tools to support them. 
Besides the commands function, with the addition of assis-
tive-efficacy in the therapeutic purpose, BCI was developed 
for diagnostics and to provide an increase in cognitive func-
tions (e.g., motor imagery experiments). An example is a flexi-
ble BCI system using dry electrodes (Figure 1).

Users can now monitor changes in EEG rhythms through 
the practice of meditation, e.g., they can classify images 
according to EEG responses to visual stimuli and monitor 
their alertness, which is closely linked to a rhythms (specific 
brain waves ranging from 7.5 to 12.5 Hz). In a recent and 
innovative instrumentation by the g.tec medical engineering 
company, an interface was linked to auditory biofeedback and 
vibro-tactile stimulators. The mindBEAGLE system [11] is a 
portable medical grade biosignal amplifier, with an EEG cap 
with active electrodes, a standard laptop computer with the 
mindBEAGLE software, in-ear phones for auditory stimula-
tion, and vibro-tactile stimulators attached to the patient’s 
body (Figure 2). The development of the new mindBeagle 
software was supported by the European Union Horizon 2020 
program, through the Small and Medium Enterprise Instru-
ment project ComAware.

More recently, BCI has taken the first steps in the field of 
entertainment, as simple guided gaming peripherals using the 
principle of artificial intelligence are being made available to a 
wider audience. The first system to implement the control of 
neuronal signals useful for computer games was the Berlin BCI 
[12], which, a little later, included cerebral versions of table ten-
nis and Pac-Man. Afterward, new BCIs were introduced to con-
trol the game that were specific to the user’s attention based on 
the degree of relaxation and could be monitored by means of a 
rhythms of the frontal cortex. These were developed as serious 
games, too. The evolution of these products led to NeuroSky 
software[13], which is sold with a wearable EEG cap device 
that allows increasing attentional arousal during children’s and 
adult’s games [14]. Additional interfaces are emerging even 
within augmented and virtual reality games. The power to men-
tally represent a task and mentally make a gesture allows the 
user, in the case of virtual environments, to interact with the 
environment or other objects through a motor imagery or global 
perception system and motor action in the absence of haptic 
feedback [15]. With regard to music and the visual arts, howev-
er, the imagery factor alone is not enough to edit an interface; 
the BCI approaches involved in these fields require an effective 
level of patient preparation and constant training to enable users 
to memorize different kinds of stimuli.

Haptic applications for commercial use have been devel-
oped in more recent times, and the state of the art with regard 
to these effectors is particularly innovative. A haptic interface 
is a device that allows us to maneuver a robot, real or virtual, 
and receive feedback in the form of tactile sensations. The 
user of a haptic interface is able to produce and use motor 
actions, such as physically manipulation of the interface, 
which in turn display and stimulate tactile kinaesthetics sensory 

FIGURE 2. The MindBEAGLE system by g.tec medical engineering. 
(Photo courtesy of g.tec medical engineering)

51 m
m

83 mm

FIGURE 1. A LiveAmp and an actiCAP Xpress Twist by Brain Prod-
ucts. (Photo courtesy of Brain Products.)

The BCI system was, at first, 
especially useful for individuals with 
motor paralysis, amyotrophic lateral 
sclerosis, and, in some cases, coma.
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information. Specifically, when participants interact with 
objects in the physical world, they implement intentional 
schemes enabling them to place and represent the effects of 
their actions. In the field of neuroscience, it is extremely 
important to develop or enable impaired haptic motor function 
or motor skills because the system also permits the integration 
of other cognitive systems. The sensorimotor grounding of the 
conceptual content shows how it could be involved in many 
more aspects of human cognitive life. For example, these 
aspects are strongly highlighted in Vittorio Gallese’s neural 
exploitation hypothesis [16] and Susan Hurley’s shared cir-
cuits model [17]. According to these theories, cognition has a 
basis in sensory-motor integration and action.

Considering the hybrid bionic connection between the arti-
fact and the nervous system, the proofs of feasibility of restora-
tion of tactile capabilities have recently been provided in 
studies with human amputees. However, the restoration of fine 
tactile skills, such as the categorization of textural features, is 
still missing. One of the first animal models applied to the 
haptic system was a robot able to actively explore the sur-
rounding environment with tactile sensors. This was devel-
oped by reproducing the biological details of the rat’s whisker 
behavior from the modeling and physical implementation of 
the whisker’s [18] primary afferent neurons and midbrain tac-
tile information processing. Later, devices were developed 
further, including one developed by the Disney research group 
called REVEL [19], a tactile system technology for augment-
ed reality. This is a very interesting approach that mixes haptic 
stimulation and augmented manipulation. In this device, the 
user feels the haptic texture of a real object while observing it 
in an augmented reality display. This interaction can be inte-
grated into a game, but it could also be interesting to extend it 
in a cognitive and perceptive task in serious game applications. 
This field of research can be easily adapted for entertainment 
and brain training applications.

As for the link of haptic prosthetics and robotics, accord-
ing to Gerald Loeb, a cofounder of SynTouch and coinven-
tor of the BioTac technology (among many other patents 
covering diverse areas of engineering and neural prosthet-
ics), one of the most relevant problems in neuroprosthetics is 
not having a haptic/tactile feedback on a robotic arm [20], 
[21]. BioTac (Figure 3) is a sensor able to perceive force, 
vibration, and temperatures and to act as a haptic extension of 
a damaged or nonexistent limb.

Numerous other works are emerging in the haptic field. 
One of the most recent and interesting approaches is present-
ed in a paper from the BioRobotics Institute in Pisa, Italy 
[22], that proposes a neuromorphic sensor capable of making 
sense of various grains and textures. This neuromorphic stim-
uli system is able to encode naturalistic textures under differ-
ent sensing conditions and might therefore be suited for 
tactile information processing in real-life applications.

In the work by Agashe et al. [23], they connected a BCI 
system to a noninvasive neuroprosthetic device. In this case, 
the prosthesis predicts the shape of the hand during grasping 
through brain signals. The cerebral mu-rhythms (specific brain 

waves ranging from 10 to 22 Hz) are taken as the control indi-
cator of the subject in locomotor stimulation. These particular 
brain waves are the equivalent of alpha waves recorded for the 
visual system, but they are located in the motor cortex. They 
are a synchronous pattern of cortical electrical activity that is 
desynchronized during the subject’s movement. Finally, 
Pfurtscheller [24] describes the hybrid BCI that can process in 
parallel two different EEG conditions: event-related desynchro-
nization/synchronization (ERD/ERS) and steady-state visual 
evoked potentials (SSVEP).

COGNITIVE AND NEUROROBOTICS MODELS  
FOR HUMAN–ROBOT INTERACTION
These important developments in BCI and prosthetics for 
hybrid human–machine systems have been complemented by 
advances in cognitive and neurorobotics and in human–robot 
interaction. Cognitive robotics [25] offers a suitable approach 
to the design of robots capable of learning and collaborating 
with humans. Cognitive robotics (also known as cognitive 
systems approach) concerns the design of robotic agents that 
are capable of learning from interaction with humans and 
with a sensorimotor control system directly inspired by the 
principles and mechanisms of behavior control observed in 
natural (animal and human) cognitive systems. Examples of 
cognitive robotics approaches include evolutionary robotics 
[26], which is based on the use of evolutionary computation 
methods to evolve the robot’s controllers during its interac-
tion with its physical and social environment; developmental 
robotics, [27] which models the gradual acquisition of behav-
ioral and cognitive capabilities in robots following child psy-
chology principles and mechanisms; and neurorobotics [28], 

FIGURE 3. A BioTac sensor by Syn Touch. The BioTac sensor is able 
to perceive force, vibration, and temperatures and act as a hap-
tic extension of a damaged or nonexistent limb. (Photo courte-
sy of the inventors and manufacturers of the technology at 
SynTouch.)

A haptic interface is a device that 
allows us to maneuver a robot, real 
or virtual, and receive feedback in 
the form of tactile sensations.
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which uses artificial neural networks (and brain–machine 
interfaces) for robot control and learning.

All of these approaches share four key principles in the 
design of social robots interacting with people: 
1)	 �embodiment, i.e., the robot’s sensors and actuators shape 

the type of behavior and cognitive control strategy devel-
oped by the robot [29], [30] 

2)	 �situatedness, i.e., where cognition is situated in the agent’s 
interaction history in its physical and social environment [31] 

3)	 �grounding, where the agent’s internal representations, in 
regard to language, are directly and intrinsically grounded 
in its experience of the world [32], [33] 

4)	 �learning, as the agent’s behavioral and cognitive strategies 
are autonomously acquired during its lifetime through 
evolutionary or developmental learning, e.g., implemented 
with neural networks, reinforcement learning, or other 
machine-learning techniques.
In the next section, we will look at two examples of cogni-

tive robotics applications exploiting the four key principles. 
The first approach shows the advantages of using a develop-
mental robotics approach that implements the four design 
principles: this consists of an experiment where the robot uses 
its body posture (embodiment principle) to acquire language 
via a situated human–robot interaction (situatedness principle) 
to ground the language (grounding principle) in the robot’s 
task and representation. Language is acquired (learning prin-
ciple) during development. The second example focuses on 
neurorobotics, with a specific emphasis on the implementation 
for neural network controllers in neuromorphic systems. This 
puts the main emphasis on the learning principle, though 
within a situated and embodied interaction with its world.

INTERACTING WITH ROBOTS: A DEVELOPMENTAL 
LANGUAGE-LEARNING APPROACH
Developmental robotics is the “interdisciplinary approach to 
the autonomous design of behavioral and cognitive capabili-
ties in artificial agents (robots) that takes direct inspiration 
from the developmental principles and mechanisms observed 
in natural cognitive systems (children)” [27]. As such, this 
approach puts a strong emphasis on the embodied and situat-
ed interaction between the (baby) robot and its caregiver or 
human tutor, taking inspiration from child development. For 
example, recent developmental psychology studies have 

investigated how body posture might be playing a critical role 
in early word learning [34]. To learn anything at all from real-
time experiences, a physical learner must be able to orient its 
sensors, and thereby its physical body, to attend to the referred 
object. Part of the learning challenge then is to react appropri-
ately, e.g., orienting to the spatial locations of objects. Here, 
we briefly present an embodied developmental approach, 
mapping the body posture to expected sensory experience for 
the learning of object names.

Morse et al. [35] use the humanoid robot iCub specifically 
to show the role of embodiment and body posture in support-
ing early word learning both in human infants and in baby 
robots. The robot’s control system uses the epigenetic robot-
ics architecture (ERA), which is a connectionist model com-
bining self-organizing maps (for the robot’s categorization 
abilities) and Hebbian learning (for the learning of object-
name associations) [Figure 4(a)]. To highlight the relevance 
of this approach, we show a short example using epigenetic 
[36] architecture as a metaphor in the construction of learn-
ing systems. Using this paradigm, we can compare the epi-
genetic approach to both robotics and neuroprosthetics 
learning processing. 

The term epigenetics, originally used by Jean Piaget, 
emphasizes the role of both the environment and of genetics 
in development. The ERA robotics example also refers to the 
concept of a Hebbian network [37]: a simulation based on a 
concept closely connected to epigenetics, where the connec-
tive model becomes predominant, expressing itself to build 
simulations of brain plasticity and connections learned in an 
epigenetic way. So, a set of Kohonen self-organized maps 
[38] are pretrained for object classification according to their 
color and shape (color and space maps). These maps tend to 
data reduction, with the consequence of a specialization of 
neural networks, rather than to its expansion. This neural 
model increases the connectivity of the system by reducing 
the number of artificial connections (nodes). In this case, the 
network models are based on a competitive learning algo-
rithm. In addition, in ERA an extra Kohonen map is pre-
trained to recognize the robot’s body posture (posture map). 
A set of Hebbian associative learning weights, connecting the 
nodes between different Kohonen maps, are trained during 
language training sessions with a human teacher. These are 
directly inspired by the child psychology studies of Samuel-
son et al. [34]. 

During these language-learning sessions [Figure 4(b)], the 
iCub changes its own posture to attend to different parts of the 
scene (i.e., to the left and the right side of the robot’s periper-
sonal space) where two objects are shown. The Hebbian 
weights are then adjusted to create new associations between 
the visual color and shape maps, the posture map, and the nodes 
representing words. This is the key mechanism implementing 
language grounding in perception and action. 

The same modeling setup has also been used not only to 
replicate previous child psychology experiments, but also to 
make predictions on additional phenomena. This, for exam-
ple, includes the prediction of the role of body posture in 

A few neurorobotics models  
have used more realistic 
implementations of brain-like 
circuitry and neurons to take direct 
inspiration from neuroscience 
findings on the distributed  
control of behavior.
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reducing interference between two competing cognitive tasks 
(later demonstrated in new child experiments; see the data 
reported in [35]). Moreover, the ERA developmental robot-
ic’s architecture has been extended to new robotic experi-
ments on the role of embodiment in the acquisition of complex, 
abstract concepts [39] and on the role of finger counting and 
pointing gestures in number learning [40].

These developmental robotics experiments and architec-
ture show the benefits of using an embodied and situated 
approach to learning. The develop-
mental learning architecture endows 
robots with the capability to adapt, 
online, to the dynamic environment it 
is experiencing. As the role of the 
human tutor is key in this learning pro-
cess, this permits a natural and dynam-
ic approach to interaction between 
people and social robot companions.

ROBOTS AND NEUROMORPHIC 
SYSTEMS: A NEUROROBOTICS 
MODEL OF ATTENTION
The neurorobotics approaches put great 
emphasis on learning, as they use con-
trol architecture based on artificial neu-
ral networks and on subsymbolic, 
distributed representations emerging 
from situated and embodied learning in 
the environment. The most current neu-
rorobotics studies are based on con-
nectionist-type neural architectures, 
as multilayer perceptrons and self-
organizing maps. For example, many 
evolutionary robotics models use per-
ceptron-like control architectures to 
evolve connection weights via genetic 
algorithms. In the ERA developmental 
architecture discussed previously, the 
robot’s control is based on an ensemble 
of self-organizing maps connected via 
Hebbian learning. In all of these con-
nectionist neurorobotics models, the de-
signer only intends to use neural control 
architecture to model paralleled and 
distributed processing strategies in cog-
nitive control and to implement learn-
ing via connectionist learning rules, but 
not to model a realistic implementation 
of neural areas and pathways involved 
in motor control.

More recently, a few neurorobotics 
models have used more realistic imple-
mentations of brain-like circuitry and 
neurons to take direct inspiration from 
neuroscience findings on the distribut-
ed control of behavior. These models 

range from the implementation of the different brain areas and 
pathways involved in behavior control (though still using connec-
tionist, functional level implementation of neuron activations and 
learning rules) to a more realistic implementation of individual 
neurons (e.g., spiking neurons) and learning mechanisms. 
These, for example, include the use of spike timing depen-
dent plasticity (STDP) that implements associative learning. 
In the computational embodied neurorobotics approach of 
the TRoPICALS model [41], a series of Kohonen maps and 
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population code maps are devoted to modeling specific brain 
areas. In this model, modules exist for the premotor cortex 
(PMC), the early visual areas (V1–V2), and the prefrontal cortex 
(PFC). This architecture is used to control a simulated iCub to 
learn the affordance of objects, to model compatibility effects, 
and to perform mental rotation tasks [42]. 

The neurorobotics studies aiming at an even more realistic 
implementation of the robot’s neurocontrol system use mod-
els of realistic biological neurons and learning rules. These 
typically utilize spiking neural networks (SNNs) [43], i.e., 
networks of neurons capable of producing spikes of activities 
following changes in the membrane potential. Learning is 
implemented with rules such as the STDP, which models a 
temporally asymmetric Hebbian rule established on time-
based correlations between pairs of connected neurons. Some 
examples of SNN robotics models that are reaching prototype 
include Joshi and Maass [44] and Bouganis and Shanahan 

[45], and SNN robotics models that are operant conditioning 
learning prototype have been developed by Helgadottir [52].

The use of SNNs for robots has been further supported by 
the availability of neuromorphic systems, i.e., novel architec-
tures which implement computational neuroscience models 
directly into the hardware. Among these, the SpiNNaker neuro-
morphic system has been specifically designed for implementa-
tion of spiking neurons. This is a universal neural network 
platform designed for real-time simulation with an array of pro-
grammable cores operating in parallel over a configurable asyn-
chronous multicast interconnect that can be easily programmed 
by users with a wide range of different models [46]. The SpiN-
Naker architecture has been integrated with an SNN model of 
attention to control goal-directed selective attention in the 
humanoid robot iCub [47]. The behavioral model was based on 
Galluppi et al. [48], an SNN model of goal-directed selective 
attention for two objects (one vertical and one horizontal, of 
which one is always preferred and thus must be reviewed). The 
SNN model takes as input, via a retina layer, an image of two 
objects via the robot’s camera. The camera image is downsam-
pled to a 16 16#  image of black and white pixels, which are 
then converted to spikes by mapping on pixels to spike outputs 
[see Figure 5(a) and (b)]. The neural architecture (Figure 6) 
simulates four interconnected brain areas involved in visual 
attention: three visual cortex layers (V1, V2, V4), the PFC layer 
driving attention toward the (prewired) preferred object orienta-
tion, and a winner-take-all lateral intraparietal cortex (LIP) area, 
involved for the attention of topographic selection and location, 
which will control the robot’s gaze behavior (in humans, the 
LIP area is involved in gaze, especially in saccadic movements 
and in eye-tracking movements).

A set of experiments were carried out to test the ability of 
neural architecture to control selective attention for the iCub 
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robots and its capability for localizing and attending to the pre-
ferred object. In one experiment, the robot is tested with a single 
object, while in the second experiment two objects are shown. 
The results show that in 20 runs of the network with different 
parameters, 14 resulted in the correct object being selected.

This model has been further extended to add a language-
learning component. Taking inspiration from a neuroanatomical 
model of visuomotor cell assemblies, the attention model was 
extended by adding an additional layer for the auditory cortex. 
This new layer receives as input speech signals, which can, for 
example, correspond to the name of the object or its properties 
(e.g., color). The extended architecture has been tested for 
object naming experiments, with the use of the STDP rule for 
the learning of vision–speech association [47].

The neurorobotics approach, and specifically the latest devel-
opments in the integration of the robot platforms with neuromor-
phic systems, offers a novel approach to the design of fully 
autonomous systems. In addition to the design of robots capable 
of learning to use brain-like control systems, other advantages of 
systems like SpiNNaker are, for example, efficiency in energy 
consumption, which is a key factor in the design of fully autono-
mous robots.

BCI INTERFACING ROBOTICS
The previous sections lead us to a short discussion and clarifi-
cation of the results obtained through the connection of BCI 
with robotic systems, especially in assistive robotics [49]. The 
recent reviews [50], [51] already indicated the existence of 
products that interface BCI systems with robotic environ-
ments, especially in the field of entertainment (e.g., Neural 
Impulse Actuator, Star Wars Force Training, and Mind Flex). 
One of the early works in this regard has been permeated with 
the objective of mechanically rebuilding prehensile capacity 
through an analysis of the EEG frequencies that are implied in 
grasping activities. The primary motor cortex, PFC, sensory-
motor cortex, and visual-motor cortex are involved in grasping 
movements, but the neural characterization at cortical EEG 
activities is poorly coded in these areas. Therefore, the decod-
ing of the kinematics of grasping has aroused great interest, 
especially for the construction of a BCI that could extrapolate 
the intention of movement and that could interface and control 
in such fashion an external device, especially humanoid robot-
ics systems [52].

In this way, humanoid robots can become an active user’s 
biofeedback. However, such a process is not simple because 
the kinematic space, given by the joint angle and the speed of 
the movement synergies, is encrypted by potential cortical 
fields. For example, in Agashe’s work (described in the section 
“Neuroprosthetics and BCI”), the subjects had to grasp various 
objects, during a BCI recording, with their natural right hand 
and through a robotic glove that specifically caught the trajec-
tories by 18 joint angles.

Other recent works, like Chae’s research, describe human-
oid robots actuating by BCI [53]. These studies developed 
humanoid robotics systems that are able to be guided through 
mind activity (EEG rhythms). These systems provided low-

level motion commands (e.g., right, left, and forward) by com-
bining the classification of three motor imagery conditions 
(i.e., right hand motion, left hand motion, and foot motion). A 
similar study on a hybrid robotics system [54] describes a low-
cost interface that allows users to control navigation and space 
investigation. This process is actuated by a humanoid robot 
that is able to recognize the chosen object by following BCI 
signals based on SSVEP and ERD/ERS.

It remains to be verified whether such a hybrid approach 
can be adapted to persons with severe disabilities who are in a 
condition to imagine the motor gesture. In particular, the latest 
research suggests that the imagery and motor training could 
restore the control of neural areas that are able to perform pre-
hensile tasks [55] and required to interface robotics prosthesis 
[56]. According to this prospective, Chella’s research [57] is 
dedicated to patients with ALS and others neuromuscular dis-
eases. In this interesting work, Chella et al. developed a muse-
um robotics guide interfaced with a BCI system. These 
innovative studies demonstrate the possibility that a subject 
can control a robot by synchronizing mentally in a human–
machine interaction system. Such results highlight  that hybrid 
interfaces are highly suitable for people with physical disabili-
ties, e.g., from the motor control of a wheelchair to the control 
of a humanoid robotic system to assistive robotic systems, 
which are also useful in domotics solutions.

CONCLUSION
This review, in addition to introducing the latest technologies 
developed within the fields of human–robot interaction and 
neuroprosthetics, shows that highly interdisciplinary 
approaches, such as those related to perceptron studies, com-
putational neuroscience, robotics, and cognitive science, con-
verge toward the building and remodulation of a functional 
process. In this human–robot interaction, of particular rele-
vance is the concept of proxemic space [58], which is the per-
sonal space that people keep around themselves and which 
becomes a cognitive and behavioral extension of the subject. 
Here, the function of space and the use of proxemics through 
technology [59] become an extension of the user. So, the 
users via such interaction technologies can enhance their 
effector system, adapting it to the central system person. This 
happens without the need to ever define an end to remodeling 
and learning feedback between the human system and the 
effector or robotic system. 

Furthermore, this interaction among cognitive neuroscience, 
engineering, robotic systems, and neuroprosthetics becomes 

These innovative studies 
demonstrate the possibility that a 
subject can control a robot by 
synchronizing mentally in a 
human–machine interaction system.
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highly valid, not only for functional applications, but also on 
theoretical applications which allow the understanding of neural 
modules. That is, through the construction of neural interfaces, it 
also becomes possible to obtain insight into the physiologi-
cal neural functioning. The development of adaptive and 
learning systems, as with the humanoid robotics models re-
viewed previously, has important implications to the overcoming 
of the current limitations preventing robots from working with 
humans. For example, current industrial assembly robots are 
rigidly preprogrammed to perform a fixed set of repetitive ac-
tions, requiring a clear, physical barrier between the robot’s work-
space and the human’s workspace. However, robots that are 
capable of learning from interaction with humans, e.g., via action 
imitation or linguistic instructions, can dynamically adapt their be-
havior to the safety and collaborative requirements of the hu-
man operator. These learning capabilities, associated with the 
latest developments in soft materials, are also leading to the de-
sign of compliant robots, i.e., robotic platforms that can safely 
share workspace with humans because their soft mechanics (e.g., 
elastic or spring actuators) prevent harm to the human users [60].

Within industrial and commercial processes, especially in 
the electronics and bionics field, the adaptive interaction be-
tween humans, prosthetics, and robotic systems is becoming 
more important. Research facilities, educational institutions, 
and industrial research and development bodies are joining 
forces for the development of innovative human–machine in-
teraction systems.

ABOUT THE AUTHORS
Angelo Cangelosi (A.Cangelosi@plymouth.ac.uk) is the 
director of the Center for Robotics and Neural Systems at the 
University of Plymouth, United Kingdom.

Sara Invitto (sara.invitto@unisalento.it) is an assistant 
professor of general psychology in the Department of Biolog-
ical and Environmental Sciences and Technologies at the 
University of Salento in Lecce, Italy, and an associate at the 
Institute of Nanoscience, National Research Council, Euro-
mediterranean Center for Nanomaterial in Lecce, Italy.

REFERENCES
[1] M. A. Lebedev and M. A. L. Nicolelis, “Toward a whole-body neuro-
prosthetic,” Prog. Brain Res., vol. 194, pp. 47–60, Jan. 2011.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,” 
Neural Netw., vol. 61., pp. 85–117, Jan. 2015. 

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. 26th Annu. Conf. 
Neural Information Processing Systems, Lake Tahoe, CA, 2012, pp. 1–9.

[4] P. Dario, P. F. M. J. Verschure, T. Prescott, G. Cheng, G. Sandini, R. 
Cingolani, R. Dillmann, D. Floreano, C. Leroux, S. MacNeil, P. Roelfse-
ma, X. Verykios, A. Bicchi, C. Melhuish, and A. Albu-Schäffer, “Robot 
companions for citizens,” in Proc. 2nd European Future Technologies 
Conf. Exhibition 2011, vol. 7, 2011, pp. 47–51.

[5] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, K. L. Koay, 
and I. Werry, “What is a robot companion-friend, assistant or butler?” 
in 2005 IEEE/RSJ Int. Conf. Intelligent Robots Systems, pp. 1192–
1197.

[6] J. Kennedy, P. Baxter, and T. Belpaeme, “The robot who tried too 
hard: Social behavior of a robot tutor can negatively affect child learn-
ing,” in Proc. 10th Annu. ACM/IEEE Int. Conf. Human–Robot Interac-
tion, 2015, pp. 67–74.

[7] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-computer 
interface research at the Wadsworth Center,” IEEE Trans. Neural Syst. 
Rehabil. Eng., vol. 8, no. 2, pp. 222–226, June 2000.

[8] B. Z. Allison, D. J. McFarland, G. Schalk, S. D. Zheng, M. M. Jack-
son, and J. R. Wolpaw, “Towards an independent brain-computer interface 
using steady state visual evoked potentials,” Clinical Neurophysiology, 
vol. 119, no. 2, pp. 399–408, Mar. 2008.

[9] J. J. Vidal, “Toward direct brain-computer communication,” Annu. 
Rev. Biophys. Bioeng., vol. 2, pp. 157–180, June 1973. 

[10] M. M. Jackson and R. Mappus, “Applications for brain-computer 
interfaces,” in Brain-Computer Interfaces. London: Springer, 2010, pp. 
21–34.

[11] C. Guger, C. Kapeller, R. Ortner, and K. Kamada, “Motor imagery 
with brain-computer interface neurotechnology,” in Motor Imagery: 
Emerging Practices, Role in Physical Therapy and Clinical Implications. 
Commack, NY: Nova, 2015, pp. 61–79.

[12] B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio, and 
K. R. Müller, “The Berlin brain-computer interface: Accurate perfor-
mance from first-session in BCI-naive subjects,” IEEE Trans. Biomed. 
Eng., vol. 55, no. 10, pp. 2452–2462, Oct. 2008. 

[13] NeuroSky. MindWave. (2014). [Online]. Available: www.neurosky 
.com

[14] J. Katona, I. Farkas, T. Ujbanyi, P. Dukan, and A. Kovari, “Evalua-
tion of the NeuroSky MindFlex EEG headset brain waves data,” in Proc. 
SAMI 2014–IEEE 12th Int. Symp. Applied Machine Intelligence Infor-
matics, 2014, pp. 91–94.

[15] S. Invitto, C. Faggiano, S. Sammarco, V. De Luca, L. T. De Paolis, 
F. Lamberti, A. Sanna, and J. Rokne, “Haptic, virtual interaction and 
motor imagery: Entertainment tools and psychophysiological testing,” 
Sensors, vol. 16, no. 394, pp. 1–17, Mar. 2016.

[16] V. Gallese and C. Sinigaglia, “What is so special about embodied 
simulation?” Trends Cogn. Sci., vol. 15, no. 11, pp. 512–519, Nov. 
2011.

[17] S. Hurley, T. Shared, C. Model, H. Control, S. C. Enable, and S. 
Hurley, “Editorial Note: The shared circuits model (SCM): How control, 
mirroring, and simulation can enable imitation, deliberation, and mind-
reading,” Behav. Brain Sci., vol. 31, no. 1,  pp. 1–58, Feb. 2008.

[18] M. J. Pearson, A. G. Pipe, C. Melhuish, B. Mitchinson, and T. J. 
Prescott, “Whiskerbot: A robotic active touch system modeled on the rat 
whisker sensory system,” Adapt. Behav., vol. 15, no. 3, pp. 223–240, 
Sept. 2007.

[19] O. Bau and I. Poupyrev, “REVEL: Tactile feedback technology for 
augmented reality,” ACM Trans. Graph., vol. 31, no. 4, pp. 1–11, July 2012.

[20] B. Matulevich, V. Pandit, C. Lin, G. E. Loeb, and J. A. Fishel, “Low-
cost, compliant contact sensor for fragile grasping with reduced cognitive 
load,” presented at the Myoelectric Controls Symp, 2014. [Online]. 
Available: http://www.syntouchllc.com/Media/_publications/2014_ 
Matulevich_MEC.pdf

[21] J. A. Fishel, S. Member, G. E. Loeb, and S. Member, “Sensing tac-
tile microvibrations with the BioTac—Comparison with human sensitivi-
ty,” in Proc. 4th IEEE Int. Conf. Biomedical Robotics Biomechatronics, 
2012, pp. 1122–1127.

The development of adaptive and 
learning systems has important 
implications to the overcoming of 
the current limitations preventing 
robots from working with humans.



july 2017  ^  IEEE Consumer Electronics Magazine 33

[22] U. B. Rongala, A. Mazzoni, and C. M. Oddo, “Neuromorphic artifi-
cial touch for categorization of naturalistic textures,” IEEE Trans. Neural 
Netw. Learn. Syst., vol. PP, no. 99, pp. 1–1, Sept. 2015.

[23] H. A. Agashe, A. Y. Paek, Y. Zhang, and E. W. Sellers, “Global corti-
cal activity predicts shape of hand during grasping,” Frontiers Neurosci., 
vol. 9, pp. 1–11, Apr. 2015.

[24] G. Pfurtscheller, B. Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-
Escalante, R. Scherer, T. O. Zander, G. Mueller-Putz, C. Neuper, and N. 
Birbaumer, “The hybrid BCI,” Frontiers Neurosci., vol. 4, p. 30, Apr. 
2010.

[25] D. Vernon, Artificial Cognitive Systems. Cambridge, MA: MIT 
Press, 2014.

[26] S. Nolfi and D. Floreano, “Synthesis of autonomous robots through 
evolution,” Trends Cognitive Sci., vol. 6, no. 1, pp. 31–37, Jan. 2002.

[27] M. Cangelosi and A. Schlesinger, Developmental Robotics: From 
Babies to Robot. Cambridge, MA: MIT Press, 2015.

[28] J. L. Krichmar, A. K. Seth, D. A. Nitz, J. G. Fleischer, and G. M. 
Edelman, “Spatial navigation and causal analysis in a brain-based device 
modeling cortical-hippocampal interactions,” Neuroinformatics, vol. 3, 
no. 3, pp. 197–221, 2005.

[29] A. Cangelosi, G. Metta, G. Sagerer, S. Nolfi, C. Nehaniv, K. Fischer, 
J. Tani, T. Belpaeme, G. Sandini, F. Nori, L. Fadiga, B. Wrede, K. Rohlf-
ing, E. Tuci, K. Dautenhahn, J. Saunders, and A. Zeschel, “Integration of 
action and language knowledge: A roadmap for developmental robotics,” 
IEEE Trans. Auton. Mental Develop., vol. 2, no. 3, pp. 167–195, Sept. 
2010.

[30] R. Pfeifer and J. C. Bongard, How the Body Shapes the Way 
We Think: A New View of Intelligence. Cambridge, MA: MIT Press, 
2006.

[31] W. J. Clancey, Situated Cognition: On Human Knowledge and  
Computer Representations. Cambridge, U.K.: Cambridge Univ. Press, 
1997.

[32] L. W. Barsalou, “Grounded cognition,” Annu. Rev. Psychology, vol. 
59, pp. 617–645, 2008.

[33] G. Pezzulo, L. W. Barsalou, A. Cangelosi, M. H. Fischer, K. McRae, 
and M. J. Spivey, “Computational grounded cognition: A new alliance 
between grounded cognition and computational modeling,” Frontiers 
Psychology, vol. 3, p. 612, Jan. 2013.

[34] L. K. Samuelson, L. B. Smith, L. K. Perry, and J. P. Spencer, 
“Grounding word learning in space,” PLoS One, vol. 6, no. 12, Dec. 
2011.

[35] A. F. Morse, V. L. Benitez, T. Belpaeme, A. Cangelosi, and L. B. 
Smith, “Posture affects how robots and infants map words to objects,” 
PLoS One, vol. 10, no. 3, Mar. 2015.

[36] A. Eccleston, N. DeWitt, C. Gunter, B. Marte, and D. Nath, “Epi-
genetics,” Nature, vol. 447, no. 7143, pp. 395–395, May 2007.

[37] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian 
learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci., 
vol. 3, no. 9, pp. 919–926, Sept. 2000.

[38] B. Anderson, “Kohonen neural networks and language,” Brain 
Lang., vol. 70, no. 1, pp. 86–94, Oct. 1999.

[39] F. Stramandinoli, D. Marocco, and A. Cangelosi, “The grounding of 
higher order concepts in action and language: A cognitive robotics 
model,” Neural Networks, vol. 32, pp. 165–173, Aug. 2012.
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