
 

Abstract—Because of the strong advantages such as 

anti-interference capability, less electrode montage, higher 

information transfer rate and no need of specific training for 

participants, steady-state visual evoked potentials (SSVEP) 

based brain-computer interface (BCI) has attracted more and 

more attentions. In order to achieve high accuracy and maintain 

considerable stability, this paper proposed an eye tracking 

technique based asynchronous SSVEP BCI method by directly 

localizing asynchronous eye-tracking-based switch to desired 

stimulation target to accelerate the BCI process. And real-time 

visual gaze feedback was also provided in necessity when 

participants could not focus their gaze to achieve satisfactory 

target identification results. By combining the heterogeneous 

signals of eye gaze position with a conventional asynchronous 

BCI paradigm, the proposed method reduced the trial duration 

while considerably high identification accuracy was maintained. 

Experiments were carried out on four participants with an 

average accuracy above 93% when the trial duration was 3s, 

while considerable performance can also be achieved when the 

trial length was shorten to 2s. 

I. INTRODUCTION 

Brain-computer interface (BCI) is a type of 

human-computer interaction channel independent of human 

muscle and peripheral nerve pathways. It usually utilizes 

electroencephalograph (EEG) signals to control external 

devices [1] and has been widely used in neurological 

rehabilitation and robotic control fields [2][3]. Steady-state 

visual evoked potential (SSVEP) BCI is based on the 

steady-state brain responses elicited from periodic visual 

stimuli, where the responses are mainly located in occipital 
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region in human visual cortex. Since the power of SSVEP 

responses mainly converges on stimulation frequency bins, 

SSVEP-based BCIs have many advantages like high 

information transfer rate, less electrodes montage, strong 

anti-interference capability, and no need of specific training 

for participants when compared to other EEG-based BCI 

paradigms [4]. Farmaki et al. [5] developed a SSVEP-based 

BCI along with a low-cost custom radio-controlled robot-car 

to test and assess the applicability of SSVEPs in real time 

navigation in realistic environments. 

SSVEP-BCI technology can be divided into two 

implementation patterns, i.e., the synchronous mode and the 

asynchronous mode [6]. Compared to the synchronous BCI 

mode that the start/stop operation was operated by the operant 

system rather than the BCI users, the asynchronous BCI 

represents a more flexible communication method of freely 

giving commands to control external devices without 

restriction of predefined start/stop time [7]. In this study, in 

order to improve the accuracy of asynchronous BCI while to 

maintain a stable performance, an asynchronous SSVEP BCI 

system based on "Switch-To-Target" paradigm was designed. 

The “switch” function was used to manipulate the turn on/off 

of the following asynchronous BCI to make sure that the 

targets of the BCI system could not be falsely triggered. 

There are many ways to implement a “switch” function in 

BCI applications. Middendorf et al. [8] and Birch et al. [9] 

respectively designed the brain switches with the 

homogeneous brain signals that the former utilized the 

SSVEP flicker and the latter extracted spontaneous motion 

imagery signals to construct the brain switches. Due to the 

homogeneous characteristic between the switch signals and 

the BCI signals that they all belong to EEG signals, these 

traditional brain switches may have false-trigger or 

low-accuracy problems. In this study, these problems were 

solved by combining the eye tracking technique into the 

eye-tracking-based switch. Due to the fact that eye tracking is 

a mature technique and has been applied successfully in 

several fields like robot controls [10], the proposed method 

has the advantages of reducing the false trigger caused by 

visual shift and also the reduction of the time break between 

the switch and the target selection, which could promote the 

implementation efficiency of BCI systems. 

The successful SSVEP BCI applications have proved that 

the relevant frequency components of EEG signals could be 

extracted by Fourier transform, canonical correlation analysis 
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(CCA) and other feature extraction algorithms. Former 

studies have shown that CCA is one of the most effective 

methods to realize feature extraction of EEG signals [11]. 

Tanaka et al. [12] compared and analyzed the BCI accuracy 

and information transfer rate among several algorithms, they 

proved that CCA with the linear discriminant analysis (LDA) 

classifier is the superior method to recognize the target 

frequency among different participants. In this study, we 

utilized the CCA based LDA algorithm for SSVEP feature 

extraction and classification, and the LDA training data came 

from our four participants. 

In this paper, we designed the asynchronous SSVEP-BCI 

system with a “Switch-To-Target” paradigm to reduce the 

false trigger rate and to make the system respond quickly. The 

eye-tracking-based switch was designed by using the gaze 

position information obtained by eye tracking technology, 

and acted as a real-time visual feedback channel in the 

running of asynchronous SSVEP BCI. And this paper adopted 

CCA based LDA algorithm for SSVEP feature extraction and 

classification. The purpose of this study is to make 

asynchronous SSVEP BCIs more accurate, stable and 

practical. 

II. METHODOLOGY 

A. System Layout 

The asynchronous SSVEP-BCI system implemented in the 

“Switch-To-Target” paradigm included the asynchronous 

gaze position acquisition module and the asynchronous 

SSVEP BCI module. The gaze position acquisition module 

was designed as an eye-tracking-based switch and responsible 

for providing real-time visual feedback. The two modules ran 

on two MATLAB environments, respectively. The gaze 

position information collected by the eye tracker device was 

transmitted to the SSVEP BCI module via TCP/IP 

transmission protocol for real-time display. The SSVEP BCI 

module was designed to be operated in an asynchronous mode. 

In other words, EEG signals were real-time acquired and 

analyzed continuously in the BCI module. 

As shown in Fig. 1, a red circle as the real-time gaze 

position was displayed on both the switch and BCI interfaces, 

where its position was determined by the average value of the 

horizontal and vertical positions of the left and right eye 

coordinates respectively. The red circle with a diameter of 10 

pixels was used as real-time visual feedback to indicate the 

participant's gaze position on the computer screen. Top, left, 

right and bottom black circles with 50-pixel diameter were the 

asynchronous eye-tracking-based switches. When the 

participant’s gaze position focused on any of the four 

switches, the focused switch would turn on and then the 

switch interface vanish, and the participant began to attend to 

the stimulation target placed in the BCI interface at the exact 

position of the previously vanished switch. After the 

completion of the asynchronous BCI task, the switch would 

automatically turn off and the switch interface would reappear 

again to replace the BCI interface, then participants could 

determine whether they want to begin the next trial or not. 

The BCI interface was designed with four checkerboard 

targets corresponding to four different stimulus frequencies to 

induce SSVEP responses. For each target, a gray and white 

alternated checkerboard pattern was adopted with the most 

outer diameter of 100 pixels [13]. The checkerboard pattern 

moved in an oscillating contraction and expansion motion 

with its modulation phase gradually shifting between 0 and π 

CCA 𝑊𝑇𝜌𝑖 

𝑑𝑒𝑔𝑟𝑒𝑒(0) 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(2) 

FFT 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(1) 

 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(0) 

Identified as the same target？ EEG  

 

Figure 1. The experimental flow chart  
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in a sinusoidal way. The motion direction change rate, which 

refers to the motion-reversal frequency, was defined as the 

fundamental stimulation frequency in the present study. 

B. Participants and EEG Recordings 

Four graduate students (one female and three males) from 

Xi’an Jiaotong University (Shaanxi, China) participated in 

this study as the volunteer participants. They are all 

able-bodied and had normal or corrected-to-normal visions. 

And no history of psychological disorders and no sensory 

deficits were reported. All written consent of the review 

committee of Xi'an Jiaotong University was provided before 

the experiments. 

As shown in Fig. 2, in accordance with the 10-20 

International Electrode Placement System, six electrodes over  

PO3, POz, PO4, O1, Oz and O2 positions were used in this 

study to collect multi-channel EEG signals that reflects brain 

activities in the visual cortex area. In addition, the reference 

electrode was attached to one-side earlobe (i.e., A1 or A2 

position), and the ground electrode was placed at the forehead 

area of FPz position [14]. EEG signals were acquired using 

the g.Nautilus (g.tec Medical Engineering GmbH, Austria) 

amplifier with a sampling rate of 500 Hz, a bandpass filter 

between 2 and 100 Hz and a 50-Hz notch filter.  

 

C. Installation of Eye Tracking Device 

The Tobii X2-30 compact eye tracker system with infrared 

video-oculography technique was used to monitor 

participants’ eye movements and to record gaze coordinates 

with a sampling rate of 30 Hz. Participants were allowed to 

blink their eyes during the experiments, which would bring no 

interference to the eye-tracking procedure. 

As showed in Fig. 3, the eye tracker was attached to the 

bottom center of the computer screen with 20°deviation from 

the vertical direction. The horizontal distance from the top 

edge of the eye tracker to the screen was 2.5 cm and the 

vertical distance was 1.5 cm. Calibration procedure was 

performed before gaze data acquisition and the standard Tobii 

calibration procedure with five fixed points was applied. 

D. Target Recognition with CCA and LDA 

As shown in Fig. 1, this study used a target recognition 

method that was based on CCA and LDA.  

1) CCA. CCA was used to detect the target frequency based 

on the canonical correlation values. Here two groups of 

signals are computed in CCA. One group is EEG signals X 

recorded from C different channels (C equals 6 for this study) 

within the time window of S sampling points. The other group 

is the pure sine and cosine reference signals with frequencies 

corresponding to the visual stimulation frequencies used to 

induce the EEG responses. The pre-constructed reference 

signals 𝑌𝐼  is formed by a series of sine and cosine waves at the 

stimulation frequency 𝑓𝑖(𝑖 = 1,⋯ , 𝑘) as 

 

            𝑌𝐼 =

(

 
 

cos(2𝜋∙𝑓𝑖∙𝑡)

cos (2𝜋∙𝑓𝑖∙𝑡)

⋮

cos(2𝜋∙𝐻𝑓𝑖∙𝑡)

cos (2𝜋∙𝐻𝑓𝑖∙𝑡))

 
 
, 𝑡 =

1

𝐹𝑆
, ⋯ ,

𝑆

𝐹𝑆
                (1) 

 

Where Fs is the sampling rate; H is the number of 

harmonics and was defined as 1 and 0.5 corresponding to the 

fundamental and subharmonic frequency components; S is the 

number of sampling points.  

Considering multidimensional variables X, 𝑌𝐼  and their 

linear combinations: 

 

   𝑥 = 𝑋𝑇𝑊𝑥   
             𝑦𝑖 = 𝑌𝑖

𝑇𝑊𝑦𝑖,                                                           (2) 

CCA seeks two weight vectors 𝑊𝑥  and 𝑊𝑦𝑖  to maximize 

the linear correlation between x and yi, through solving the 

following optimization problem: 

 

𝜌(x, 𝑦𝑖) =
𝐸(𝑥𝑇𝑦𝑖)

√𝐸(𝑥𝑇𝑥)𝐸(𝑦𝑖
𝑇𝑦𝑖)

⁄  

 

=
𝐸(𝑊𝑥

𝑇𝑋𝑌𝑖
𝑇𝑊𝑦𝑖)

√𝐸(𝑊𝑥
𝑇𝑋𝑋𝑇𝑊𝑦𝑖)𝐸(𝑊𝑥

𝑇𝑌𝑖𝑌𝑖
𝑇𝑊𝑦𝑖)

                            (3) 

 

2）CCA based LDA classification.  For each frequency 

Figure 2. The channel location over the visual cortex area (Recording 
electrodes: PO3, POz, PO4, O1, Oz, O2; Reference electrode: one-side 

earlobe position, i.e., A1 or A2; Ground electrode: FPz). 

Figure 3. The placement of the eye tracker device 

34

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 08,2020 at 04:58:36 UTC from IEEE Xplore.  Restrictions apply. 



 

𝑓𝑖(𝑖 = 1,⋯ , 𝑘), the correlation coefficient  𝜌𝑖  is obtained 

through CCA, which forms an k-dimensional vector defined 

as: 

𝜌𝑖 = [𝜌1, 𝜌2, … , 𝜌𝑘]
𝑇                                                     (4) 

According to [15],  the criterion is considered as: 

 

𝐽(𝑊) =
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
                                                       (5) 

 

Where 𝑊𝜖𝑅𝐾×𝐿  and  𝐿 < 𝐾 . The generalization of the 

within-class covariance matrix to the case of K classes is 𝑆𝐵, 

and the between-class covariance is 𝑆𝑊: 

 

𝑆𝐵 =
1

𝐾
∑ (𝑚𝑖 −𝑚)(𝑚𝑖 −𝑚)

𝑇𝐾
𝑖=1                          (6) 

 

𝑆𝑊 = ∑ ∑ (𝜌 − 𝑚𝑖)(𝜌 − 𝑚𝑖)
𝑇

𝜌𝜖𝜌𝑖
𝐾
𝑖=1                   (7) 

 

Where 𝑚 is the sample mean. 

According to [15], The eigenvectors  𝑊 was displayed by 

the matrix 𝑆𝑤
−1𝑆𝐵   corresponding to the largest of the 

eigenvalues. To obtain W for each participant, we used the 

dataset labeled frequency𝑓𝑖.  
To classify the input vector, the Euclidean distance 

between the input and the vector was determined by 𝑊𝑇𝜌.  

And, generally speaking, the better the raw data signals, the 

better the separability of the classification results. The target 

was detected by: 

 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑗) = argmin√(𝑊
𝑇𝜌 − 𝑚𝑖)

𝑇(𝑊𝑇𝜌 − 𝑚𝑖)      (8) 

 

Where  𝑗 = 0,1,2… . 

 

E. Experimental Procedure 

After participants passed the eye tracking calibration, they 

entered the “Switch-To-Target” based asynchronous SSVEP 

BCI experiment. First, they entered the asynchronous switch 

interface. After the switch was turned on, the participant 

entered the asynchronous SSVEP BCI interface. They were 

asked to look at one of the checkerboard targets 

corresponding to the previously vanished switch until the 

result of the target recognition came out. Through the 

real-time visual feedback by the eye tracker, the participants 

voluntarily chose the start time of the task.  

Our aim was to minimize the time of EEG data collection 

while maintaining the classification accuracy. So in this study, 

the displaying time of the checkerboard stimulus unit was not 

fixed, and the completion of each trial was determined by the 

fact that whether the system could accurately detect the target 

or not. As shown in Fig. 1, there were two tasks in total. The 

lengths of the original window of the two tasks were different, 

which were 3s for Task 1 and 2s for Task 2, respectively. And 

as shown in Fig. 4, EEG signals were segmented by using the 

time sliding window. The time window length was adopted as 

the length of the original window according to the two tasks, 

where the sliding window length of Task 1 was 3s while 2s for 

Task 2. After that, the length of the sliding window did not 

change, and the sliding interval was 0.5s. When the 

identification results of two adjacent sliding windows were 

the same, i.e., 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑗) = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑗+1), then the recognition in 

that trial was completed.  

 
In this study, each task contained 40 runs and each 10 runs 

for each stimulus frequency. The stimulus frequencies were 

set as 8.57 Hz, 10 Hz, 12 Hz, and 15 Hz, respectively. The 

elongated indicator below the checkerboard unit indicated the 

spectral degree of SSVEP signals, and the degree was 

calculated as: 

 

𝑑𝑒𝑔𝑟𝑒𝑒(𝑛) =
𝐴𝑚𝑝(𝑓𝑧)+𝐴𝑚𝑝(𝑓𝑧/2)

∑ (𝐴𝑚𝑝(𝑓𝑧𝑖)+𝐴𝑚𝑝(𝑓𝑧𝑖/2))
4
𝑖=1

× 100   (9) 

 

Where degree indicates the spectral degree of SSVEP 

signals, 𝑓𝑧 is the target stimulation frequency, 𝐴𝑚𝑝(𝑓𝑧) is the 

amplitude spectrum at frequency 𝑓𝑧, and 𝑖 is the number of the 

stimulus unit. Here  𝑛 = 0,1,2 … . 

III. RESULTS 

There were 320-run (2 tasks × 4 participants × 4 

frequencies × 10 runs) EEG datasets collected from different 

participants. By removing the transient visual evoked 

potentials that existed during the initial phase of the SSVEP 

signals collected during each trial, the first 0.5-s EEG data of 

each trial was removed from the analysis. CCA based LDA 

classification was implemented on the preprocessed EEG 

signals, which integrated six-channel data to determine the 

target stimulation frequency and calculated the identification 

accuracy. Fourier transform was carried out on the average 

value of EEG data collected from Oz channel with the most 

prominent signal quality to calculate the value of degree. 

Table I summarizes the average accuracy and degree 

values of four stimulus frequencies among four different 

participants in two tasks, as well as the average time required 

for each participant to accurately identify the target. 

According to the above experimental procedure, as the time 

window slides, if the target identified in two adjacent time 

0 0.5 1 1.5 2 2.5 3 3.5 

Time/s 

4 

4 

Task 1:    data length: 3s   

Task 2:    data length: 2s   

0 0.5 1 1.5 2 2.5 3 3.5 

Time/s 
Figure 4. EEG data segmented by using the time sliding window 
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windows is the same one, i.e., 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑗) = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑗+1), then 

the trial is finished. According to the statistics in Table I, the 

average time required to accurately identify the target 

indicates that, the correct target can be roughly judged in the 

second identification.  

 

Fig. 5 shows the average accuracy of four participants in 

two tasks at different frequencies. In task 1 and task 2, 

participants could achieve high recognition accuracy and the 

system performance maintained stability. The comparison 

results showed that the accuracies of Task 1 were higher than 

that of Task 2 for the four participants involved in the 

experiments, i.e., the accuracies of the data length of 3s were 

higher than that of 2s. However, even the time window for 

collecting EEG data was set as 2s, the grand averaged 

accuracy across participants could also reach above 78%. 

What's more, the degree value showed in Table I can be 

generally higher than 25%. 

 

IV. CONCLUSION 

In this study, asynchronous eye-tracking-based switch and 

real-time visual feedback were added to the asynchronous 

SSVEP BCI system, and CCA based LDA classification was 

used for target recognition. Our aim is to minimize the time it 

takes for the presentation of visual stimulations, such as the 

checkerboard motion stimulation in this paper, while ensuring 

high recognition accuracy. In this study, real-time visual 

feedback could provide participants with clear visual 

indication and positive guidance. Otherwise, the 

“Switch-To-Target” interval was also diminished due to our 

proposed design. The experimental results showed that when 

the EEG data were collected in 3-s length, the accuracy rate 

can reach 93%. The “Switch” function enabled the 

participants to obtain more rest time. In this study, the state of 

the same participant could be maintained persistently and the 

differences in between participants were not significant. 

Asynchronous SSVEP BCI systems are more practical than 

synchronous systems, providing participants with more 

choices and a better experience. In future studies, we can 

design more stimulation units to implement complex control 

commands, so that people with neuromuscular disorders or 

people in need of rehabilitation can better control intelligent 

systems. And more complex supervised machine learning 

methods can also be adopted to improve the performance of 

our proposed design. 
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